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To address the issues of low computational efficiency and limited receptive fields in
current Transformer-based point cloud semantic segmentation models when processing
large-scale point clouds, this research proposes a 3D point cloud semantic segmentation
method combining a linear self-attention mechanism with asymmetric online knowledge
distillation. This method aims to bridge the efficiency gap between state-of-the-art and
lightweight models. First, a linear self-attention mechanism specifically for point clouds
is designed. Its core lies in decoupling the computational complexity of self-attention
from the receptive field size (O(∥P∥ · k) → O(∥P∥)) through specific kernel function
designs combined with point cloud positional encoding. This allows the model to sig-
nificantly reduce the computational burden while expanding the receptive field to effec-
tively fuse local geometry with Larger-scale context. Second, to address the potential
performance degradation caused by linear attention, as well as the inherent disorder,
sparsity, and ”geometric shortcut” problems of point cloud data, an asymmetric online
knowledge distillation framework is proposed. This framework combines self-supervised
learning tasks with knowledge transfer between teacher-student models. By using asym-
metric inputs (different cropping ratios, added noise) and specific loss functions, the
robust feature representations learned by the teacher model are effectively transferred to
the lightweight linear-attention student model. This overcomes the geometric shortcut
problem and enhances the student model’s feature learning capability. This research
anticipates constructing an efficient point cloud semantic segmentation model that is
competitive in both segmentation accuracy and computational efficiency. This pro-
vides a feasible solution for applying the technology in resource-constrained scenarios
such as autonomous driving, robotics, and AR/VR, thereby promoting technological
development in related fields.
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1 Introduction

1.1 Background

With the development of point cloud deep learning, especially the proposal of indoor and
outdoor datasets [1]–[6] and key point cloud methods [7]–[12], the application of point clouds in
semantic segmentation, object detection, 3D reconstruction, and other fields has been greatly pro-
moted. As one of the fundamental tasks in 3D computer vision, the development of point cloud
semantic segmentation often influences the progress in classification, detection, reconstruction, etc.,
particularly in high-precision scenarios. However, according to recent research trends, the advance-
ment of state-of-the-art models for point cloud semantic segmentation is often accompanied by a
sharp increase in model parameters and computational cost, especially with the proposal and de-
velopment of point cloud transformers [12]–[16]. This has led to a widening efficiency gap between
advanced models and lightweight, readily deployable models. To mitigate this issue, researchers
have proposed various methods, such as lightweight Encoder-Decoder architectures [11], [17], [18],
model pruning [19], model quantization [20], optimization of self-attention mechanism efficiency
[14], [21]–[28], and knowledge distillation [18], [29]–[31].

Optimization of self-attention mechanism efficiency has been a research direction since
the introduction of self-attention [32]. It mainly focuses on improving the capture efficiency of
self-attention [33]–[36] by partitioning and shrinking the receptive field, as well as reducing feature
grouping, thereby decreasing the amount of data processed in parallel and enhancing the efficiency
of obtaining self-attention. Concurrently, there are optimizations targeting the quadratic time
complexity of self-attention [24]–[28], which employ kernel features, kernel functions, and various
simple functions combined with activation functions to approximate softmax, thus reducing the
time complexity to linear and significantly decreasing the model’s computational cost.

Knowledge distillation, as one of the most popular and effective model compression methods
currently in computer vision and natural language processing [37], has its core idea [29] in learning
from a large, complex teacher model to train a small, lightweight student model. This method
achieves knowledge transfer from teacher to student by comparing the intermediate layer outputs
and final outputs of the teacher model, thereby pre-training the student model. The pre-trained
student model is then fine-tuned on downstream tasks, ultimately enabling the student model to
perform comparably to, or even better than, the teacher model. Through long-term theoretical
analysis and experimental validation, this method currently has a solid theoretical basis [19], [29],
[38], [39] and empirical performance [37], and has been widely applied in fields such as image
classification and semantic segmentation.

Inspired by the two aforementioned research directions, this study proposes a point cloud se-
mantic segmentation model based on linear self-attention and asymmetric knowledge distillation:
On one hand, knowledge distillation is used to effectively transfer knowledge from high-performance,
high-complexity traditional point cloud self-attention models at various learning stages to an effi-
cient, lightweight linear self-attention model. On the other hand, by designing a linear self-attention
mechanism based on point clouds, the computational efficiency of the model will be optimized, the
receptive field for global semantic information will be expanded, and the model’s computational
burden will be reduced.Finally, the model will improve the model’s operational efficiency while
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enhancing segmentation accuracy.

1.2 Problem Statement

Although the self-attention mechanism has demonstrated powerful feature learning capabilities
in point cloud semantic segmentation, its use of a local self-attention mechanism often prevents the
model from explicitly processing global information when dealing with large-scale point clouds; it
must instead be acquired gradually through pyramid-style encoding layers. This not only leads to
typically deep encoder architectures but also the time complexity of local self-attention is sensitive
to the receptive field size, which limits the ability of self-attention to directly capture global semantic
information and imposes high requirements on device resources for self-attention-based point cloud
semantic segmentation models.

To pursue higher efficiency, the linear self-attention mechanism offers a promising direction.
By decoupling the computational time complexity of the local self-attention mechanism from the
receptive field size, it not only facilitates expanding the receptive field per layer and reducing model
depth but also enhances computational efficiency. However, directly applying linear self-attention
mechanisms to raw point clouds faces the following two challenges:

Performance Maintenance Difficulty: Compared to traditional self-attention mechanisms,
linear self-attention, while simplifying computation, may have a reduced capacity to capture com-
plex inter-point relationships and long-term dependencies, leading to a performance gap compared
to state-of-the-art models. How to effectively narrow this gap, enabling linear models to achieve or
even surpass the performance of complex models, has become a pressing issue.

Robustness Challenge in Feature Learning: Compared to data like images and language,
point cloud data possesses characteristics of disorderliness and sparsity [7], causing its semantic
segmentation effectiveness to rely on human-designed geometric relationships [31], for example,
using algorithms like k-NN, serialization, voxelization, or projection to generate geometric struc-
tures. Moreover, models without sufficient design considerations can easily fall into the ”geometric
shortcut” trap [18]: during semantic segmentation, they excessively rely on simple geometric cues
such as normals and density, while ignoring the semantic information of the point cloud scene.
This further hinders the performance improvement of linear models. Under these circumstances,
this research must ensure that the designed linear attention mechanism is not only computationally
efficient but can also effectively integrate local geometric structures and global context, learning
feature representations that are genuinely robust for the semantic segmentation task.

To ensure that the linear self-attention mechanism can approach or even exceed the performance
of traditional self-attention mechanisms, and to enable it to learn robust feature representations
for point clouds, we introduce the method of knowledge distillation. However, due to the inherent
challenges of point clouds (disorderliness, sparsity, geometric shortcut problem), directly transfer-
ring distillation frameworks and loss functions from the image domain can lead to severe feature
loss. Therefore, the design of the distillation framework and the distillation loss function becomes
one of the key aspects of this research.

In summary, the core problem of this research lies in: how to design an effective mechanism such
that, while maintaining the efficiency advantages of linear attention, the model can overcome the
inherent challenges of point clouds and fully inherit the powerful feature representation capabilities
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of complex teacher models through strategies like knowledge distillation, ultimately achieving high-
efficiency and high-accuracy semantic segmentation of raw point clouds.

1.3 Objectives

The objectives of this research are as follows:

1. Design a linear self-attention mechanism for point clouds: Construct a self-attention
mechanism whose time complexity is decoupled from the receptive field size. This mechanism
should establish appropriate geometric structures to capture geometric features, addressing
the disorderliness and sparsity of point clouds, and effectively fuse geometric features with
global context.

2. Design an asymmetric online knowledge distillation framework: Propose an asym-
metric online distillation strategy aimed at transferring the robust feature representations
learned by a teacher model based on traditional self-attention to a linear self-attention stu-
dent model. This is intended to compensate for the potential performance loss caused by
simplified computation and to overcome the geometric shortcut problem.

3. Construct a high-accuracy, high-efficiency point cloud semantic segmentation
model: Fine-tune the distilled linear self-attention student model combined with an out-
put layer on downstream semantic segmentation tasks to obtain an end-to-end deep learning
model for raw point cloud semantic segmentation.

4. Conduct a comprehensive evaluation of the linear self-attention model: Systemati-
cally evaluate the segmentation accuracy (using OA and mIoU) and computational efficiency
(parameter count, inference speed, FLOPs) of the proposed model on multiple standard 3D
point cloud semantic segmentation datasets [1]–[4], and compare it with current state-of-the-
art methods.

5. Validate the effectiveness of the method: Through ablation studies, verify the impact
and contribution of the designed linear self-attention mechanism, the distillation method, and
other individual modules to the overall performance.

1.4 Significance

This research focuses on the application challenges of current transformer-based point cloud
semantic segmentation models in large-scale point clouds and resource-constrained scenarios. The
proposed linear self-attention mechanism for raw point clouds holds the promise of decoupling
time complexity from receptive field size, potentially improving both accuracy and computational
efficiency, thus paving the way for further deployment of high-precision point cloud segmentation
models.

Furthermore, to bridge the performance gap between linear self-attention and traditional self-
attention, this study explores an asymmetric online distillation strategy to transfer the robust
feature representations from complex teacher models to efficient linear self-attention student models.
This not only offers the potential to close the performance gap but could even enable lightweight
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models to achieve or exceed the accuracy of complex models, providing a novel and effective pathway
for constructing point cloud analysis models that balance high efficiency with high performance.

Moreover, this research pioneers the combination of these two advanced techniques, applying
them to the fundamental and crucial task of 3D semantic segmentation. Exploring their synergistic
potential within the point cloud domain holds significant exploratory value.

Finally, by achieving high-efficiency, high-accuracy point cloud semantic segmentation, the
outcomes of this research can directly advance cutting-edge applications such as environmental per-
ception in autonomous driving systems, robot navigation and interaction, and augmented/virtual
reality scene understanding, demonstrating substantial application value.

2 Related Work
This part introduces the development status of self-attention mechanisms, knowledge distilla-

tion, and point cloud semantic segmentation relevant to this research, and elaborates on the value
and some issues of current work.

2.1 Self-Attention Mechanism

2.1.1 Vanilla Self-Attention Mechanism

The standard transformer [32] has achieved tremendous success in the field of computer vision.
By capturing long-range contextual dependencies, it has largely surpassed the effectiveness of CNNs
and RNNs in visual feature capture. However, due to its quadratic time complexity O(N2), the
computational cost is significant when processing high-resolution images or large-scale point clouds.

Liu et al.[21] proposed using local windows and window shifting to limit the transformer’s field
of view, thereby reducing the computational load. Wang et al.[22] reduced computation by using a
feature pyramid with progressive reduction. Although these methods improve efficiency, they result
in a reduced field of view for the transformer and do not fundamentally solve the bottleneck of the
self-attention mechanism’s quadratic time complexity.

2.1.2 Self-Attention on Point Clouds

Zhao et al.[12] first introduced the self-attention mechanism into point clouds and, combined
with the inherent characteristics of point clouds, used MLPs for positional encoding, enabling self-
attention to better capture local geometric information. Lai et al.[13], building upon the multi-head
self-attention mechanism, introduced contextual positional encoding and a stratified key sampling
strategy, providing inspiration for transformers to further capture geometric information at both
local and global scales in point clouds. Wu et al.[14] addressed the overfitting problem caused
by the drastic parameter increase in [12]’s vector attention as model depth and channel numbers
grow, by proposing Grouped Vector Attention. By introducing an additional position encoding
multiplier and Partition-based Pooling, it made point cloud-based self-attention computation more
efficient and utilization of geometric information more complete. Wu et al.[15] further simplified the
computational efficiency of self-attention for capturing geometric information through Point Cloud
Serialization and improved accuracy. Most of these methods employ local self-attention mechanisms
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[21] to optimize computational efficiency in large-scale point cloud scenarios. This, on one hand,
limits the model’s receptive field size, making it easier to overlook global semantic information. On
the other hand, excessive network depth and lower computational efficiency restrict deployment in
resource-constrained situations.

2.1.3 Linear Self-Attention Mechanism

Linear self-attention aims to replace the Softmax operation with kernel-based similarities,
thereby reducing the complexity from O(N2) to O(N). Early work, Katharopoulos et al.[24],
proposed using linear dot products of kernelized feature maps. Shen et al.[40] used ReLU(·) as
the kernel function to implement linear attention. Qin et al.[27] combined ReLU(·) with a cosine-
based re-weighting mechanism, aiming to enhance the locality inductive biases of self-attention
weights. Most of these methods discard negative feature maps due to ReLU(·), and the result-
ing attention weights tend to be uniform (high entropy), lacking distinctiveness. Han et al.[28]
extended ReLU(·), introducing a power operation to approximate the exponential function for fea-
ture processing, aiming to maintain both non-negativity and low entropy characteristics of attention
weights, but the issue of negative value loss persisted. Kacham et al.[41] demonstrated through
Empirical Demonstration and Behavioral Similarity that polynomial kernels can practically replace
softmax in terms of performance. Meng et al.[42] proved the existence of a class of element-wise
functions g(·) (requiring first derivative g′(x) > 0 and second derivative g′′(x) > 0) that can be ap-
plied to feature maps to reduce the entropy of the attention distribution. In practice, by explicitly
handling positive-negative interactions and using learnable power functions to lower entropy, they
mitigated the issues of negative value loss and high entropy. However, the work of [41], [42] might
have achieved performance maintenance or even superiority only on a few specific types of image
datasets, rather than being a universal method for fitting traditional self-attention across all data
forms. Furthermore, solely using linear attention mechanisms to approximate traditional attention
and achieve comparable or superior performance across different datasets is very difficult. There-
fore, it is necessary to introduce techniques like knowledge distillation to optimize the learning of
linear self-attention.

2.2 Knowledge Distillation

The concept of model compression, which involves using a smaller, faster model to mimic the
functionality of a large, complex, high-performing but slow model, was proposed by Buciluǎ et al.[38]
in 2006. With the rise of deep learning, the depth of neural networks increased rapidly, bringing the
concept of model compression back into researchers’ focus. Ba et al.[30] demonstrated that shallow
networks can learn by matching the logits of deep teacher networks, without needing soft targets.
Around the same time, Hinton et al.[29] formally proposed the concept of knowledge distillation.
This method introduces a temperature parameter to soften the probability outputs, enabling the
student model to learn the soft targets from the teacher model’s output, thereby compressing the
teacher model into a lightweight student model. Subsequently, knowledge distillation expanded in
various directions. Romero et al.[43] first introduced feature-based distillation, using hints from
the intermediate layers of the teacher model to further guide the student model. Zagoruyko et
al.[44] proposed the concept of attention transfer, using attention maps derived from feature maps
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as knowledge. Yim et al.[45] first proposed relation-based distillation, utilizing the FSP Matrix
as the relationship between different feature maps. Zhang et al.[46] first proposed Deep Mutual
Learning, the concept of online distillation, where each student model learns by matching the soft
targets of other students. These methods laid the foundation for modern distillation techniques.

2.2.1 Knowledge Distillation on 3D Semantic Segmentation

Knowledge distillation in the point cloud semantic segmentation domain has received lim-
ited research attention and primarily focuses on structured point clouds (voxels, projections). Zhang
et al.[47] addressed the weakly supervised large-scale point cloud semantic segmentation problem
with only a few labeled points by constructing a perturbed branch to apply random and learnable
transformations to the input point cloud, forcing consistency with its original branch prediction, and
using JS divergence for distillation. Hou et al.[48] combined point-level and voxel-level distillation,
as well as inter-point and inter-voxel relation distillation, to significantly compress the model while
maintaining competitive performance. Chen et al.[49] performed completely unsupervised 3D point
cloud semantic segmentation through 2D-to-3D cross-modal distillation and supervoxel clustering.
Liu et al.[50] first attempted to use 2D Vision Foundation Models for self-supervised representa-
tion learning on 3D large-scale point cloud sequences, utilizing 2D-3D correspondences through
VFM-assisted superpixels and superpoints for contrastive learning and cross-modal knowledge dis-
tillation. Yu et al.[51] proposed Object-level Denoising Projection for 2D CLIP feature extraction
and 3D feature aggregation as the teacher model, designed Multimodal Distillation Learning (MDL)
with Object-centered Constraints for the student model, and used feature loss and label loss for
supervision. Most of these distillation methods are characterized by overly simple distillation losses
and relatively naive distillation scheme designs, which can easily lead point clouds into geometric
shortcuts, resulting in the loss of semantic information. Furthermore, they often employ inflexible
structured point clouds, incurring additional overhead for voxel or projection computation while
causing pixel-level feature loss. Therefore, exploring semantic segmentation based on knowledge
distillation for raw point clouds holds significant value.

2.3 3D Semantic Segmentation on Point Clouds

Semantic segmentation based on raw point clouds began with PointNet [7]. This work high-
lighted the inherent characteristics of point clouds, such as disorderliness and rotation invariance,
and employed shared multi-layer perceptrons (MLPs) as the fundamental network unit to overcome
the network design challenges posed by these characteristics. However, this work only mapped the
high-dimensional features from the encoder output to each point using a single MLP, resulting
in significant feature loss. Qi et al.[8] borrowed the shared MLP concept from PointNet as the
basic unit and adopted a U-Net structure, constructing an Encoder-Decoder architecture. This
allowed the low-resolution point clouds with high-dimensional features from the encoder output to
be gradually restored to high resolution through a pyramid-shaped decoder. This work laid the
foundation for point cloud semantic segmentation architectures: point clouds progressively pass
through encoder layers to generate low-resolution, high-dimensional feature point clouds, and then
through decoder layers to recover high-resolution, low-dimensional feature representations of the
original point cloud, finally outputting segmentation probabilities through a classifier.
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Subsequent developments in point cloud semantic segmentation primarily focused on optimiz-
ing the shared MLP [52]–[58]. These methods did not employ self-attention mechanisms, making
it difficult to capture contextual dependencies in point clouds. After 2021, with the proposal of
Point Transformer [12], research in point cloud semantic segmentation concentrated on improving
the point cloud self-attention mechanism [13]–[16], [59]. Additionally, there have been efforts to
optimize the PointNet++-based architecture [8] through data augmentation and designing robust
point cloud data representations [60], [61]. Wu et al.[18]’s designed Sonata is currently the best-
performing model in point cloud semantic segmentation. It innovatively introduced the concept
of self-supervised learning to point cloud semantic segmentation. Through tasks like reconstruct-
ing masked and cropped point cloud features using teacher and student models, and calculating
Sinkhorn-Knopp centering between the teacher’s and student’s outputs, it enables the student
model to learn robust feature representations of point clouds. However, because these methods
all utilize local self-attention mechanisms, they limit the receptive field size while also reducing
computational efficiency.

3 Proposed Method
This section first elaborates on the feasibility and optimization goals of the design, then provides

a detailed description of the research’s design for the linear self-attention mechanism based on raw
point clouds, the asymmetric knowledge distillation strategy based on raw point clouds, and the
main architecture of the model.

3.1 Feasibility Analysis and Optimization Goals

Let the input point cloud be X, the student model parameters be denoted by θS , and the
teacher model parameters by θT . The models are S(X; θS) and T (X; θT ) respectively; the soft
or hard labels for the semantic segmentation task are Y . The Universal Approximation Theorem
(UAT) [62] states that, theoretically, neural networks with sufficient capacity are universal function
approximators. This implies that for the function fT (X) = T (X; θ∗T ) learned by the teacher model
(θ∗T being the trained parameters), there exists, in principle, a set of parameters θS such that the
student model S(X; θS) can approximate fT (X) to arbitrary precision, provided that the capacity
of model S is sufficient. However, in reality, due to the differences between linear and non-linear
attention mechanisms, the capacity of S is strictly less than that of T . Therefore, as pointed out in
the proof by Keles et al.[63], it is difficult to find or design a linear self-attention mechanism that
adapts to the point cloud feature representations across the entire vector space. On the other hand,
although S cannot fully approximate T , UAT indicates that S can still perfectly approximate T

within a specific vector space. Furthermore, [41], [42] show through extensive experiments that for
a specific task, there almost certainly exists such a special solution parameter interval [θS1

, θS2
] such

that S(X; θS) ≈ fT (X), and the size of the parameter solution space is negatively correlated with
the size of the vector space. This suggests that it is theoretically feasible for linear self-attention to
fully approximate traditional self-attention on specific tasks.

However, limited by the depth of neural networks, it is difficult to find an optimal approxima-
tion solution parameter for traditional self-attention mechanisms using only traditional supervised
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learning when the vector space is too large, i.e., in tasks with large-scale, high-dimensional data.
Therefore, certain constraints must be introduced (in this study, we set the knowledge distillation
loss function as LKD as the constraint). Thus, the optimization goal of this research is as follows:

θ∗S = arg min
θS

LKD(T (X; θ∗T ), S(X; θS)) (1)

By using a specially designed knowledge distillation method, it is feasible to converge constrained
linear self-attention to traditional self-attention, thereby achieving the effect of a high-performance,
high-efficiency point cloud segmentation model.

3.2 Linear Attention

The traditional self-attention mechanism [32] can be represented by the following formula:

attention = Softmax
(
QKT

√
d

)
V (2)

where Q,K, V ∈ RN×d represent the Query, Key, and Value matrices, respectively. Its vector form
is:

attentiont =

∑N

i=1 exp (qtk
T
i /

√
d)∑N

j=1 exp (qtkT
j /

√
d)

vi (3)

where qt represents the t-th Query vector of Q, ki represents the i-th Key vector, vi represents the
i-th Value vector, N is the sequence length, and d is the feature dimension of each attention head.
Equations (2) and (3) show that calculating QKT has a complexity of O(N2). Katharopoulos et
al.[24] proposed the generalized self-attention formula:

v
′

t =

∑N

i=1 sim(qt, k
T
i )∑N

j=1 sim(qt, kT
j )

vi (4)

viewing the exp (·/
√
d) in equations (2) and (3) as a special similarity function sim(·, ·). Subse-

quently, the similarity function sim(qt, ki) is represented as a kernel function k(qt, ki), and feature
mapping ϕ(·)(RD → RC) is used such that k(x, y) = ϕ(x)

T
ϕ(y). Through this rewriting and the

associative property of multiplication, it can be simplified to:

v
′

t =
ϕ(qt)

T ∑N

j=1 ϕ(kj)v
T
j

ϕ(qt)
T ∑N

j=1 ϕ(kj)
(5)

Since it only needs to compute
∑N

i=1 ϕ(ki)v
T
i and

∑N

j=1 ϕ(kj) once, the computational complexity
of this form is O(N). This formula indicates that the main task of kernel-based linear self-attention
mechanisms lies in designing appropriate kernel functions. Inspired by the work of [42], [63], and
considering the current issues of negative value loss and high entropy in kernel functions, the linear
self-attention mechanism in this research is based on the design of [42] as follows:

3.2.1 Solving the Problem of Negative Feature Map Loss

PolaFormer [42] proposes that q and k can be decomposed as follows:

q = q+ − q−, k = k+ − k− (6)
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where q+i = max(qi, 0), q−i = max(−qi, 0), and the decomposition for k is similar. Substituting
equation (6) into the vector inner product calculation yields:

⟨q, k⟩ = ⟨q+, k+⟩+ ⟨q−, k−⟩ −
(
⟨q+, k−⟩+ ⟨q−, k+⟩

)
(7)

Thus, the similarity function can be decomposed as:

sim(q, k) =
(
ϕ(q+)ϕ(k+)

T
+ ϕ(q−)ϕ(k−)

T )− (
ϕ(q+)ϕ(k−)

T
+ ϕ(q−)ϕ(k+)

T ) (8)

where ϕ(·) is the kernel function. This operation explicitly handles negative values, thereby pre-
venting negative value loss. To avoid the instability of the subtraction operation, a mixed learning
approach is adopted to obtain the self-attention. The final self-attention output is:

attentiont =

[
ϕ([q+t ; q

−
t ])

∑N

i=1 ϕ([k
+
i ; k

−
i ])

T vsi

ϕ([q+t ; q
−
t ])

∑N

j=1 ϕ([k
+
j ; k

−
j ])

T
⊙Gs;

ϕ([q+t ; q
−
t ])

∑N

i=1 ϕ([k
−
i ; k

+
i ])

T voi

ϕ([q+t ; q
−
t ])

∑N

j=1 ϕ([k
−
j ; k

+
j ])

T
⊙Go

]
(9)

where [; ] denotes the concatenation operation, vi = [vsi ; v
o
i ], and Gs, Go are learnable parameters.

3.2.2 Kernel Function Design

The kernel function cannot simply be chosen as ReLU, because this would lead to a decrease in
sharpness and cause the feature map distribution to become too flat, i.e., the high entropy problem
[28]. Keles et al.[63] pointed out that the Taylor series ex ≈

∑p

k=0
xk

k!
can be used to approximate

Softmax dot-product attention, and its p-th order approximation can be computed in O(ndpqdv).
However, directly using this method to approximate exp(·) requires a high order p to meet accuracy
requirements, but typically when p is slightly larger, its computational efficiency becomes worse
than the traditional self-attention mechanism. Influenced by this, this research, building upon
ReLU, introduces a g-th order odd-degree learnable polynomial, similar to a Taylor polynomial, to
simplify computation while ensuring the sharpness of the feature map:

P (x) =

g∑
i=1

wix
pi + bias (10)

where x = ReLU(k+) or ReLU(−k−), and similarly for q. pi = 2i − 1 indicates performing a
pi-th power operation on each element of x, wi is used to dynamically activate a specific odd
power function for different elements, and bias is a vector used to dynamically disperse the element
distribution when data is scarce. To ensure that at least one odd power function is active, this
research introduces the following regularization term:

LP =

g∑
i=1

g∑
j=1,i ̸=j

∥wi∥∥wj∥
∥wi − wj∥2

(11)

3.2.3 Point Cloud Linear Attention

To overcome the inherent challenges of point clouds (disorderliness, sparsity, and the ”geo-
metric shortcut” problem), the method for obtaining Q,K, V differs from that used for images,
and positional encoding must be introduced [12]. Let the point cloud set be P, P ⊂ Rn×3. For
any element pt ∈ P , its feature is ft ∈ RC (where C is the feature dimension). By constructing
a geometric structure, a subset P ′ ⊂ P representing its geometric information is obtained. Let
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pj ∈ P ′, its feature is fj ∈ RC . Uq, Uk, Uv are linear layers. δmul, δbias, γ are multi-layer perceptrons
(MLPs). Then Q,K, V can be obtained through the following formula:

qt = Uq(ft); kj = Uk(fj); vj = Uv(fj); (12)

Note that qt, kj , vj here are scalars, not vectors. The position encoding-based self-attention mech-
anism (ungrouped) from Point Transformer V2 [14] can be represented as:

attentiont = Softmax(δmul(pt − pj)⊙ γ(qt, kj) + δbias(pt − pj))⊙ vj (13)

Let rtj = δmul(pt−pj)⊙γ(qt, kj)+δbias(pt−pj). Then, the scalar form of this attention mechanism
is:

attentiont =

∑N

j=1 exp (rtj)∑N

j=1 exp (rtj)
vj (14)

where N = ∥P ′∥. Combining formula (5) and the meaning of point cloud positional encoding, this
research performs the following decomposition:

attentiont =
ϕ(qt)

∑N

j=1

[
γ(ϕ(kj)vj)⊙ δmul(pt − pj) + δbias(pt − pj)

]
ϕ(qt)

∑N

j=1

[
ϕ(kj)⊙ δmul(pt − pj) + δbias(pt − pj)

] (15)

Further combining with formula (9), and letting η
[+;−]
s =

∑N

j=1

[
γ(ϕ([k+

j ; k
−
j ])v

s
j )⊙ δmul(pt − pj) +

δbias(pt− pj)
]
; ξ[+;−] =

∑N

j=1

[
ϕ([k+

j ; k
−
j ])⊙ δmul(pt− pj)+ δbias(pt− pj)

]
, we obtain the final linear

self-attention mechanism based on raw point clouds:

attentiont =

[
ϕ([q+t ; q

−
t ])η

[+;−]
s

ϕ([q+t ; q
−
t ])ξ

[+;−]
⊙Gs;

ϕ([q+t ; q
−
t ])η

[−;+]
o

ϕ([q+t ; q
−
t ])ξ

[−;+]
⊙Go

]
(16)

This formula shows that the time complexity of linear self-attention is O(∥P∥) rather than O(∥P∥ ·
N), indicating that N is decoupled from the time complexity. Therefore, increasing the receptive
field does not lead to a multiplicative increase in time complexity. Furthermore, adopting the
polar decomposition method from PolaFormer [42] ensures that negative values are not lost while
maintaining low entropy in the feature map.

3.3 Model Architecture

3.3.1 Backbone

Inspired by Sonata [18], the model does not adopt a decoder structure but replaces it with a
linear output layer. This allows the model to focus more on capturing semantic information during
pre-training tasks, rather than fusion. Compared to point cloud transformers like [13]–[15] which
use four encoding layers as the encoder, this model proposes using two or three encoder layers,
reducing the number of transformer modules included in each encoder layer, and significantly in-
creasing the receptive field of each transformer block. Except for the first encoder layer, which
consists of an embedding layer and several transformer blocks, each subsequent encoder layer con-
sists of a downsampling layer and several transformer blocks. Furthermore, feature concatenation
is performed using Sonata’s ”up_cast” method.
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3.3.2 Point Embedding

Before entering the encoder structure, the point cloud is first arranged into a one-dimensional
sequence using serialization ideas [64] through space-filling curves such as Z-order curves and Hilbert
curves, preserving spatial locality to some extent. This method facilitates the computation of
local self-attention. Finally, a sparse convolutional architecture maps the point cloud features and
performs positional encoding, making it easier for the encoder to extract features.

3.3.3 Downsampling Layer

Adopting the voxelization idea from [14], the serialized point cloud is downsampled while
performing feature fusion: the point cloud is divided into several point blocks according to a
one-dimensional grid, and the features of points within each grid are aggregated by taking the
maximum value along each feature dimension as the superpoint feature. Finally, a linear layer
maps the features to a higher dimension.

3.3.4 Transformer Block

First, the serialization and deserialization indices of the point cloud are obtained. Then, Q, K,
V are output through three linear layers. The obtained QKV are organized into sequences using the
serialization index. Different from Point Transformer V3, when organizing groups, it not only uses
a larger scale but also obtains a larger scale group through downsampling and feature fusion. This
research believes that this method not only allows attention to acquire a larger receptive field but,
more importantly, enables attention to focus more on semantic information rather than geometric
shortcuts by comparing and extracting features from local and global groups. Finally, the two
groups are concatenated, multi-head self-attention is computed, and added to the input features
via a residual connection.

3.3.5 Output Block

The features from each level for every point are concatenated. Then, segmentation probabilities
are output through a linear layer, a normalization layer, and a softmax function.

3.4 Asymmetric Knowledge Distillation Strategy

To better utilize current large-scale point cloud datasets for training, this research adopts a
distillation scheme combining self-supervised learning with a teacher-student model framework,
pre-training the main model through supervision and teacher-student model interaction.

3.4.1 Teacher-Student Architecture

Student Model: As the main model of this research, it uses linear self-attention and the
architecture described above. Its gradients originate from two sources: one is the gradient obtained
from the self-supervised learning loss Lself , and the other is the gradient obtained from the com-
parison loss with the teacher model, Lteacher. The weights of these two gradients change during the
training process:

L = αLself + βLteacher (17)
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This research proposes to use the parameters α and β such that in the early stages of training,
the student model’s gradient mainly comes from the teacher, while in the later stages, its gradient
mainly comes from supervised learning. This approach helps the student acquire transferred knowl-
edge from the teacher model early on and prevents overfitting to the teacher’s knowledge through
self-supervised learning. On the other hand, designing the self-supervised learning scheme can also
enable the student model to acquire semantic information more directly.

Teacher Model: As the auxiliary model for distillation, it is proposed to use Sonata [18]
as the main architecture and employ online distillation to train alongside the student model. Its
gradient source comes entirely from supervised learning.

3.4.2 Self-Supervised Learning

Preprocessing Downsampling: In the dataset preprocessing part, after applying data aug-
mentation operations such as rotation, scaling, translation, illumination enhancement, cropping,
etc., to the point cloud data, a downsampling process similar to 3.3.3 is performed on the data,
but without feature fusion, only randomly retaining a few points within the grid. Afterwards, the
information of the sampled points is retained, the indices of the point clouds in the same grid are
recorded, and these points are removed from the original point cloud.

Upsampling to Recover Point Cloud Information: The original point cloud high-
dimensional features output from the teacher or student model are linearly interpolated [8] to
the retained sampled points to obtain high-dimensional sampled point features. These are then
fed into a pre-trained decoder (linear layer or MLP) to predict the non-coordinate information of
the retained sampled points, obtaining a predicted view and the original view. Online clustering
and Sinkhorn-Knopp are used to obtain the logits for the predicted view and the original view.
Finally, two predictions, Pp, Po, are output through softmax with temperature [65], and the loss is
calculated using cross-entropy.

3.4.3 Knowledge Transfer

To make the student focus more on local geometric information, different cropping ratios are
applied to the point cloud data for the teacher and student models. Typically, the student retains
only a local point cloud view, while the teacher retains a global point cloud view. Additionally,
Gaussian noise is added to each dimension of the points sampled by the student to reduce the degree
of overfitting. Knowledge transfer between the teacher and student models occurs by comparing the
output high-dimensional point cloud features, using the same loss calculation method as in section
3.4.2. However, the loss calculation is performed directly on the high-dimensional features without
dimensionality reduction through a decoder. In this way, knowledge learned by the teacher model
at various stages is transferred.

4 Experimental Design
This chapter will detail the experimental plan designed to verify the effectiveness and efficiency

of the proposed method on the 3D semantic segmentation task. We will evaluate the model perfor-
mance on standard benchmark datasets and compare it with state-of-the-art methods. Furthermore,
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thorough ablation studies will be conducted to analyze the contribution of each component, partic-
ularly evaluating the similarities and differences between the linear self-attention mechanism and
the traditional self-attention mechanism. Of course, some details may be expanded or changed as
the experiments progress.

4.1 Datasets

• Main Evaluation Datasets

– ScanNet (v2): A widely used indoor scene semantic segmentation benchmark, following
standard train/validation splits.

– S3DIS: Contains 6 large indoor areas, using Area 5 for testing or 6-fold cross-validation.

• Pre-training Datasets: Adopting a large-scale pre-training strategy similar to Sonata [18],
integrating datasets including ScanNet (v2), S3DIS, ArkitScenes, HM3D, Structured3D, etc.,
for pre-training to improve the model’s generalization ability.

4.2 Evaluation Protocols and Metrics

To comprehensively evaluate the quality of the representations learned by the model, we will
use multi-dimensional evaluation protocols:

• Linear Probing: Freeze the pre-trained/distilled encoder and train only a linear classifica-
tion head (parameter count < 0.2%) for downstream tasks (like semantic segmentation). This
is the core standard for evaluating the quality of distilled learned representations, directly re-
flecting the semantic discrimination ability of the encoder features and reducing interference
from geometric shortcuts.

• Decoder Probing: Freeze the pre-trained/distilled encoder, reintroduce and train only
a lightweight decoder (e.g., parameter count approx. 10-15% of the total). Evaluate the
performance potential of the encoder features when combined with a small number of task-
related parameters, serving as an intermediate step between linear probing and full fine-
tuning.

• Full Fine-tuning: Unfreeze the entire model (including encoder and decoder/output layer)
and fine-tune end-to-end on the downstream task data to evaluate the best performance the
model can achieve on that specific task.

• Use OA and mIoU as core metrics.

• Efficiency Evaluation: Parameters, FLOPs, Inference Speed.

4.3 Comparison Methods

Based on different technical routes and current progress, this research will compare with the
following methods:

• Traditional methods: PointNet++ [8], KPConv [10].
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• Transformer-based methods: Point Transformer v2 [14], Point Transformer v3 [15], Stratified
Transformer [13], Swin3D [16].

• Distillation-related methods:

– Sonata: As the teacher model, and also as the SOTA benchmark, especially its linear
probing results.

– MSC (Masked Scene Contrast)

– PointContrast (PC)

• In addition to the above methods, other advanced methods such as PointVector [61] and
PointNeXt [60] will be introduced later as needed for experiments.

4.4 Ablation Experiments

Design rigorous ablation experiments to verify the contribution of each module:

• Core Component Validation:

– Linear Attention vs. Standard Attention: Under the same architecture and dis-
tillation framework, replace linear attention with standard self-attention (e.g., the at-
tention from Point Transformer V2/V3) for comparison.

– Distillation vs. No Distillation: Compare the performance of the complete model
with that of a student model using only linear attention trained with standard supervi-
sion.

• Linear Attention Design Analysis:

– Polar Decomposition: Remove or simplify the mechanism for handling positive and
negative features to evaluate its impact.

– Kernel Function Design: Compare the polynomial kernel with other linear kernels
(like ReLU) or polynomials of fixed degrees.

– Point Cloud Specific Design: Remove or simplify the positional encoding and at-
tention modifications specific to point clouds to assess their contribution.

• Asymmetric Distillation Strategy Analysis:

– Self-Supervised Task: Remove the self-supervised part, relying solely on teacher
distillation.

– Teacher Distillation: Remove the teacher distillation part, relying solely on the self-
supervised task.

– Asymmetric Input: Compare the effects of using symmetric inputs (same crop-
ping/augmentation) versus asymmetric inputs.

• Architecture Choice Validation:

– Compare the effects of different encoder depths.

– Compare the effects of setting different receptive field sizes.

– Validate the contribution of larger-scale grouping when computing attention.
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5 Expected Outcomes and Contributions
This research anticipates producing the following outcomes and contributing to the field of

point cloud semantic segmentation and related applications:

1. Propose a novel point cloud-based linear self-attention mechanism: This mechanism
can effectively handle the disorderliness and sparsity of point clouds and integrate local ge-
ometry with larger-scale context. Its core contribution lies in decoupling the time complexity
from the receptive field size, allowing for a significant reduction in computational burden
while expanding the receptive field, thereby improving model efficiency.

2. Construct a high-efficiency and high-accuracy point cloud semantic segmentation
model: By combining the designed linear self-attention mechanism with the asymmetric
distillation strategy, it is expected to build a model that is competitive in segmentation accu-
racy while outperforming existing state-of-the-art Transformer or Transformer-like methods
in computational efficiency (parameter count, inference speed, FLOPs).

3. Propose an effective asymmetric online knowledge distillation framework: This frame-
work, through the combination of self-supervised learning and teacher-student model distilla-
tion, can effectively transfer the robust feature representations learned by a complex teacher
model to a lightweight linear self-attention mechanism student model.

4. Provide a feasible solution for exploring point cloud applications in resource-constrained
scenarios: The high-efficiency model proposed by this research is expected to lower the de-
ployment threshold for point cloud semantic segmentation technology on resource-constrained
platforms such as autonomous driving, robotics, and AR/VR, promoting the implementation
and development of these cutting-edge applications.

This research aims to break the efficiency bottleneck commonly found in current high-performance
point cloud segmentation models. Through innovative linear self-attention design and knowledge
distillation strategies, it seeks to achieve a balance between accuracy and efficiency, providing a
promising solution for large-scale, high-accuracy, real-time point cloud semantic segmentation, and
promoting the practical application of related technologies.
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6 Research Plan and Timeline
First Stage (Months 1-2): Literature Review and Foundational Preparation

• Gain in-depth understanding of the latest progress in related fields (linear at-
tention, knowledge distillation, point cloud segmentation).

• Familiarize with the components of the latest version of PyTorch and reproduce
project code from relevant papers.

• Complete downloading, preprocessing, and format unification for datasets (Scan-
Net, S3DIS, etc.).

• Preliminarily set up the experimental environment and code framework.

Second Stage (Months 3-5): Core Algorithm Design and Implementation

• Implement the point cloud-based linear self-attention mechanism (including po-
lar decomposition, kernel function design, positional encoding integration).

• Design and implement the asymmetric online knowledge distillation framework
(including Teacher-Student architecture, self-supervised tasks, knowledge trans-
fer loss).

• First draft of the paper: Methods section.

Third Stage (Months 6-8): Model Construction and Preliminary Training

• Construct the complete semantic segmentation model backbone (including em-
bedding layer, downsampling layer, Transformer Block, output layer).

• Implement the pre-training pipeline for large-scale datasets.
• Complete the reproduction and training of the teacher model (Sonata).
• Conduct preliminary distillation pre-training experiments.

Fourth Stage (Months 9-12): Model Tuning and Comprehensive Evaluation

• Perform comprehensive evaluations on benchmark datasets like ScanNet, S3DIS
(Linear Probing, Decoder Probing, Full Fine-tuning).

• Compare performance and efficiency with SOTA methods.
• Analyze experimental results, adjust model parameters and training strategies.

Fifth Stage (Months 13-15): Ablation Experiments and Analysis

• Design and complete detailed ablation experiments to validate the effective-
ness of each core component (linear attention, distillation strategy, architecture
choices, etc.).

• Deeply analyze the performance differences between linear attention and stan-
dard attention.

• Write the experimental results and analysis sections.

Sixth Stage (Months 16-18): Paper Writing and Conclusion

• Complete the writing and polishing of the research paper.
• Prepare the paper for submission.
• Organize and open-source the relevant code.
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