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A B S T R A C T   

The accurate segmentation of fruit phenotypes in the field is of great significance for agricultural automation in 
the 3D scene. Although the existing fruit segmentation based on 3D point cloud has made great progress, in the 
complex field environment, due to lighting, leaf occlusion, shooting angle and other problems, the point cloud 
obtained by depth camera often has the problem of multiple voids and discrete points, which seriously affects the 
accurate segmentation of fruit phenotype. This paper proposes a embedding subnetwork FSDnet based on 
density-based feature extraction and feature propagation and embeds it in the novel segmentation networks, 
which effectively improves the segmentation accuracy of the point cloud phenotype in multi-hole and multi- 
discrete fruits, including (1) The density-based point cloud feature extraction and feature propagation theory 
is proposed to alleviate the problem of perception degradation in fruit edge point caused by discrete points and 
holes caused by imcomplete point cloud in the agriculture scene. (2) A density-adaptive embedding semantic 
segmentation framework FSDnet is proposed, and embedding the classical point cloud neural network can 
significantly improve the segmentation accuracy of the fruit phenotypes with multiple holes and discrete points 
in the traditional network. (3) This paper made a strawberry dataset and tested the designed new neural network 
on both strawberry and apple filed dataset. After FSDnet is embedded on different novel net, almost all net have 
been improved. We verified the performance of FSDnet in different density states in agricultural scenarios, 
mitigated the negative impact of density on segmentation accuracy, proving that it can adapt to different point 
cloud density in agricultural scenarios in comparison between Gaussian density and other two traditional density 
schemes, Gaussian density reduces the computational traffic (0.58G) of the network while maintaining similar 
performance to the other two densities, proving the superiority of assuming a Gaussian density.   

1. Introduction 

With the development of agricultural automation, how to efficiently 
identify fruit phenotypes and their environmental characteristics and 
further improve the accuracy of automatic picking has become the core 
issue of current fruit automatic picking. The main problem is the accu
rate segmentation of the fruit phenotype data from its environment. At 
present, between the two main data forms of image and point cloud, 
point cloud can reflect the phenotype and environmental characteristics 
of crops more comprehensively, which becomes an emerging research 
direction. 

The traditional point cloud technology is mainly uses LiDAR to get 
point cloud, but in agricultural scenarios, high planting density and 

complex plant characteristics, coupled with the susceptibility to strong 
light interference, low color recognition of lidar scanning equipment, 
make it impossible for large-scale applications in agricultural field. With 
the development of depth cameras and the advancement of point cloud 
inversion theory, depth cameras based image reconstruction overcomes 
many shortcomings of traditional 3D scanners and becomes the key 
means to collect crop point clouds. Although the depth camera is cheap 
and portable, it can effectively plant feature capture and ensure the 
reconstruction integrality of plant traits with high accuracy, and it has 
the prospect of large-scale application in the agricultural field. However, 
affected by the environment and angle, the fruit point cloud obtained by 
this method has many discrete points, lacks and holes, which seriously 
affect the segmentation accuracy of the edge point in the fruit point 
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cloud. Therefore, restoring the missing features caused by discrete 
points and holes is the key for efficient segmentation of fruit phenotypes 
from environment. 

In recent years, point cloud semantic segmentation has made great 
progress. Mainstream point cloud semantic segmentation schemes have 
been formed based on projection, discretization and original point 
cloud. Among them, the original point cloud-based method has become 
the main solution for the semantic segmentation of agricultural point 
cloud because of low computational traffic, low equipment re
quirements and high feasibility. However, the current network is mainly 
applied to semantic segmentation datasets in industrial and indoor en
vironments (S3DIS (Hightower et al., 2000), ScanNet (Dai et al., 2017), 
ShapeNet (Chang et al., 2015)), and there is a lack of attention to the 
processing of multi-view generated point clouds in agricultural scenes, 
which are often accompanied by holes and discrete points due to the 
complexity of agricultural scenes. Therefore, it will affect the segmen
tation effect of the current network structure on the dataset. 

Based on this, we propose a embeddable density-based semantic 
segmentation framework for fruit point clouds: FSDnet (Features 
Spreading Net with Density). Feature extraction and feature propagation 
are performed by minimizing the local density of fruit point clouds to 
improve the semantic segmentation accuracy of field fruits in the case of 
missing and multiple discrete points. The main contributions are as 
follows: 

A density-based point cloud feature extraction and feature propa
gation learning method are proposed, in order to alleviate the problem 
that the point cloud has many holes and multiple discrete points in the 
agricultural scene, which leads to the decrease of fruit detail perception. 

A density feature-based embedding subnetwork FSDnet is designed 
to implement density-based feature extraction and feature propagation 
methods, which alleviates the accuracy degradation of fruit phenotype 
segmentation in traditional frameworks. 

A semantic segmentation model is proposed for accurately seg
menting fruits under uneven field point cloud density, which provides a 
new idea for accurately extracting the detailed phenotypic characteris
tics of field fruits with holes and lacks. 

2. Related work 

2.1. Current status of point cloud deep learning 

With the progress of point cloud deep learning technology, point 
cloud semantic segmentation technology has been widely used in the 
automatic driving, robot operation and virtual reality. hitherto, three 
mainstream methods have been developed based on projection, dis
cretization and original point cloud. 

Projection-based methods. In 2017, Jaremo Lawin et al. (2017) first 
adopted the method of projecting multiple angle views onto a 2D plane. 
Similarly, Boulch et al. (2017) generated several RGB and depth snap
shots of a point cloud using multiple camera positions. However, thesy 
cannot solve the loss of accuracy from occlusion and viewpoint selec
tion. The projection-based method solves the problem of difficult seg
mentation caused by the disorder of the point cloud. However, with the 
increase of the number of point clouds, the projection method will 
seriously consume cost. 

Discretization-based methods. In 2016, Huang and You (2016) first 
divided the point cloud into a set of voxel grids, and then fed these in
termediate data into a full 3DCNN for voxel segmentation. Meng et al. 
(2019) introduced a kernel-based interpolating variational autoencoder 
architecture. Tchapmi et al. (2017) proposed SEGCloud to achieve fine- 
grained and globally consistent semantic segmentation. The granularity 
of such methods and boundary artifacts causes point cloud division in 
loss of features. And due to large computation voxelization, voxel based 
network is more computational complexity than point based methods. 

Methods based on raw point clouds. In 2017, pointnet (Qi et al., 
2017) made pioneering work on this method. Encoding, pooling, 

extracting features, and decoding each point through shared mlp can 
theoretically effectively deal with the disordered structure of point 
clouds, but because of the loss of features due to pooling, and the lack of 
capture of local spatial geometric features, it failed to achieve the 
desired effect. After that, the point cloud semantic segmentation 
network was mostly improved on the basis of pointnet, and developed 
the following four mainstream improvement ideas. 

(1) Improvements based on the MLP network. To enhance the cap
ture of local geometric features, Ni et al. (2020) proposed the 
pointnet++ by grouping and sampling point clouds for feature 
extraction and propagating with linear interpolation. Zhao et al. 
(2019) proposed PointWeb, which employs the AFA module to 
capture the relationships among neighboring points during 
feature extraction, yielding promising results. Nonetheless, the 
approach is constrained by the exclusive use of MLP for learning 
extracted features, making it challenging to enhance the accuracy 
further.  

(2) Improvements based on RNN. Huang et al. (2018a) proposed a 
lightweight local modeling and used slice pooling layers to 
convert unordered points into ordered vector sequences. To 
alleviate the problems caused by static pooling operations, Huang 
et al. (2018b) proposed a dynamic aggregation network (DAR
Net) to handle both global scene complexity and local geometric 
features. The above methods improve the learning ability of local 
features, but they increase the computational cost.  

(3) Improvements based on graph neural networks. Landrieu and 
Boussaha (2019) represented a point cloud as a set of interrelated 
simple shapes and superpoints and used a superpoint graph to 
capture structural and contextual information. Zhiheng and Ning 
(2019) proposed a Pyramid Net based on Graph Embedding 
Module (GEM) and Pyramid Attention Network (PAN), but the 
construction of super-point graphs for point clouds remains to be 
studied.  

(4) Improvements Based on Point Convolutions. Thomas et al. (2019) 
proposed KPConv to achieve the approximation of spatial 
convolution, but its preset weights make it impossible to achieve 
the optimal weight combination and lose the flexibility of 
convolution to dynamically modify the weights. Xu et al. (2021) 
used scorenet to learn point positions to flexibly assemble kernel 
weights. During backpropagation, the original gradient of a 
convolution is divided by multiple scores learned by scorenet, so 
the sensitivity of weight modification is weakened. 

2.2. Related work on density estimation 

Wu et al. (2019) proposed PointConv, a method that utilizes a spatial 
convolution design based on density and position weights. However, 
their approach employs a ternary Gaussian density estimation, which 
significantly deviates from the actual density. Li et al. (2020) introduced 
Density-aware Convolution, which uses a multivariate Gaussian kernel 
and achieves more accurate density estimation through smoothing fac
tors and normalization. Nonetheless, the smoothing factors and 
normalization constants are learned using a multilayer perceptron 
(MLP), adding additional overhead. Mao et al. (2019) proposed an 
interpolation-based spatial convolution approach that employs a 
simplified multivariate Gaussian density kernel for density-based 
interpolation. However, they neglected the covariance matrix when 
designing the Gaussian kernel, leading to reduced accuracy in density 
estimation. But due to the large amount of covariance matrix in the 
actual calculation, the use of complete three-dimensional normal den
sity will lead to the overload of computing resources, and the calculation 
period will be too long or even incomputable. Therefore, we propose a 
method that uses three one-dimensional normal densities to be mapped 
to integer intervals by hash functions and then used as lookup indexes 
for specific parameter tables, so as to reduce the impact of ignoring 
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independence and enable specific parameter tables to learn specific 
parameter preferences. 

2.3. Point cloud deep learning in crop segmentation 

In recent years, thanks to the rapid development of 3D point cloud in 
the field of computer vision and the spatial learning of point cloud se
mantic segmentation in the industrial field, scholars have tried to apply 
point cloud semantic segmentation in the agricultural field. Li et al. 
(2022) developed the DeepSeg3DMaize system based on Pointnet, 
which provided a reference for the automated analysis of 3D phenotypic 
characteristics at the plant individual level. Chen et al. (2021) integrated 
and improved the local feature aggregation module in RandLA-Net to 
achieve 3D point cloud semantic segmentation of large-scale structured 
agricultural scenes. Jayakumari et al. (2021) improved the random 
sampling scheme of pointnet by segmentation of cabbage, tomato and 
eggplant. Hu et al. (2021) adopted the HSV spatial color enhancement 
algorithm on pointnet++ to achieve semantic segmentation of point 
clouds of rapeseed in rapeseed fields. Yu et al. (2022) added a 3DSTN 
spatial variation network to align point clouds on pointnet and designed 
a pyramid-shaped pooling module for feature extraction, realizing the 
segmentation of apples, pears and lemons. Since the research of point 
cloud semantic segmentation in the agricultural field has just started, it 
generally lags behind the development of point cloud deep learning. At 
the same time, in the field environment with high planting density and 
complex and diverse plant traits, depth cameras can capture complex 
plant traits with low price, which has the prospect of large-scale 
application. 

As previously stated, in real-world agricultural production, depth 
camera image synthesis datasets are suited for complex field planting 
scenarios. However, factors such as shooting angles may lead to the 
presence of holes and discrete points. We intend to devote increased 
attention to addressing these issues in future research. Therefore, the 
segmentation of the edge points of the holes on image synthesis point 

cloud has become an urgent problem to be solved. 

3. The design of features spreading net with density 

For data sets with multiple discrete points and multiple holes in 
agricultural scenarios, the density of fruit point clouds at the edges of 
holes is low, while the density on the rays along the edge to the center of 
the dataset increases sharply. In this case, the feature points of fruit 
points are nearly all interior dense point. In the traditional method, since 
the interior points account for the majority of the feature points, the 
segmentation probability of the fruit point tends to be consistent with 
the interior dense points instead of the low dense exterior points. 
However, fruit edge points, especially the points at the edge of the holes 
caused by uncompleted point cloud, their categories are often incon
sistent with interior points, thus eventually leading to segmentation 
errors. 

We propose a density-based feature extraction and propagation 
method to solve the above problems in fruit segmentation. For the 
method based on the original point cloud, there are often two actions of 
feature extraction and feature propagation. However, due to the disor
der of the point cloud structure, simple feature extraction and feature 
propagation will cause loss of features in the fruit point cloud with holes 
and discrete points. Therefore, we add the density calculation module 
and the density weight to correct the feature, improve the efficiency of 
feature extraction and propagation, and realize the segmentation of fruit 
edge points. We call the above network architecture FSDnet (Features 
Spreading Net with Density) Fig. 1. 

3.1. Design of density calculation scheme 

The traditional calculation of point cloud density is mainly in the 
point cloud preprocessing stage, and the algorithm is complex and 
computationally expensive. In this paper, a Gaussian density is proposed 
to replace the traditional density estimation method. 

Fig. 1. (a) The main logic of our work.sag:sampling and grouping.max:max pooling.inp:interpolation.sfl: Specific Layer, the core layer of the network we have 
embedded. FSDnet: the core layer of our work. (b) The main logic of core layer. (c) Non-keyframe layer. 
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3.1.1. Traditional density prediction scheme  

(1) For each point, by KNN sampling process, suppose k points are 
sampled, and the reciprocal of the distance of the farthest sam
pling point is selected as the density estimation of the point, as 
shown in formula (1). 

ρi =
1

max
{
distij, j = 0,⋯, k

} (1)    

(2) On the basis of the number of sampling points above, take the 
reciprocal of the average value of the distance sum from the K 
sampling points as the density estimation, as shown in formula 
(2). 

ρi =
1

mean
{
distij, j = 0,⋯, k

} (2)  

3.1.2. Gaussian density estimation scheme 
Although the above two schemes can better present the density 

distribution of fruit point clouds, they have a large amount of calculation 
and are difficult to popularize on a large scale. In order to reduce the 
computational traffic, we adopt Gaussian density as the core density 
estimation scheme. 

Below we give proof that the distribution probability of the point 
cloud conforms to a Gaussian distribution in the fruit point cloud scene 
with large number of points: 

We assume that a certain fruit point cloud set is P = {pi = (xi1 , xi2,

Fig. 2. Feature extraction of mlp network.  

Fig. 3. Density-based feature extraction.  

Fig. 4. Linear interpolation.  
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xi3)| i = 0,1,2,3,⋯,n}, then ∀i ∈ [1, n], ∃F, there is di = F(xi1, xi2, xi3)(di 
for the probability density, and (xi1 , xi2, xi3) is the coordinates of a point 
set relative to a central point.), obviously the distribution is independent 
of each other when the fruit point cloud pi is limited, and the mathe
matical expectation of each dimension is limited and cooperative in the 
case of no repeated points. Assuming the mathematical expectation of 
each dimension is E(xr) = ur, r = 1,2, 3; The covariance matrix is 
Cov(xi1, xi2, xi3) =

(
σkj

)
(k, j = 1, 2,3), i = 1, 2,⋯n, we can deduce for

mula (3) from Levy-Lindberg central limit law.   

That is, for a certain fruit point cloud scene, when the number of 
point clouds is large enough, pi obeys the normal distribution of the 
three-dimensional vector. 

However, due to the need to calculate the covariance matrix of the 
3D normal density, the computational resources are too large and the 
calculation period is too long, which makes it difficult to apply the 3D 
normal density in real-time training or inference. Therefore, we use the 
Gaussian probability density of points to replace the traditional density 

for calculation (detailed implementation in Section 3.4). Replacing the 

Fig. 5. Density-based interpolation.  

Fig. 6. Elaborating on Density Weighted Learning Networks. (a) A Features Spreading Layer With Density. LN + Linear: Serially passing through a Linear and a 
LayerNorm. SAG:Sampling and Grouping as the premise of computational density.TBD: Table Bank of Denstiy, provide the weights based on the index of density. (b) 
The process of inquiry in TBD. 
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traditional density estimation scheme with Gaussian density can reduce 
the calculation and improve the feature recognition accuracy. We will 
design Gaussian density into the below two feature processing schemes 
and analyze its better performance. 

3.2. Density-based feature extraction 

According to the analysis of the characteristics of the data set, in the 
segmentation of edge points, the contribution of point sets with low 
density should be appropriately higher, and that with high density 
should be lower because of similar characteristics. This view point is 
worthy of discussion. Let the fruit point cloud set be P = {pi = (xi,yi,zi)

|i = 1,2,3,⋯,n}, for any fruit point cloud pi, its corresponding feature 

point set is piÂ⋅ =
{

pij|j = 1,2,⋯,m
}

, we also regard the input feature 

points as unprocessed features, then there are F =
{

f s
ij|s = 0,1,⋯, c; i = 1,⋯, n; j = 1,⋯,m

}
, where s means after the s-th 

Layer network operations. Each feature corresponds to a point density, 
then the feature point density set can be expressed as diÂ⋅ =
{
dij|j = 1,2,⋯, k

}
, and the feature extraction operation can be 

expressed as formula (4): 

f s+1
i = Λ

{
K(pi, f s

ij)|i = 1,⋯, n; j = 1,⋯,m; s = 0, 1,⋯, c
}

(4)  

where K is the convolution operation and Λ the pooling operation, dij is 
calculated in Eq. (10). 

In the features f s
ij of the characteristic points input by the s-th layer of 

convolution of edge points, we set the probability of feature points with 
high density to appear as F1, and that with low density F2, obviously, 
F1 > F2. 

For a point pi to be classified, it can be expressed as formula (5): 

f s+1
i = Λ

{
Kr

(
pi, f s

ij

)
•Wi|i = 1,⋯, n; j = 1,⋯,m; s = 0, 1,⋯, c

}
(5) 

We will use weight calculated from density (Section 4.4) to attenuate 
the contribution of large density points to extract edge point features. On 
the other hand, in fruit point clouds with similar densities, the weights of 
all points are similar, so it will not cause a drop in the segmentation 
accuracy of internal points. 

We assume that the fruit point cloud is divided into two classes (class 
1, class 2), then for an unknown point (its true class is 2), its features are 
often from surrounding points (feature points) and the constituted local 
parts determined by geometric features. In Fig. 2, the points of class 1 
around the unknown point are high-density points, and the points of 
class 2 are low-density points. The easiest way to get unknown point 
features is to sample a certain number of nearby points around and learn 
through a mlp to get their point features. Due to the disorder of the input 
point cloud,its mlp must use the same parameters for each feature point 
to be extracted (using 1 × 1 convolution), so it is impossible to use 
different weights for different points. This method will cause low- 

Fig. 7. Partial point cloud scene display of strawberry dataset.  

Table 1 
The number of point cloud (m: millions)).  

DatasetCategory Floor 0 Base 1 Plant 2 Fruit 3 Total 

Training set 263.9 m 128.6 m 240.8 m 16.5 m 649.9 m 
Test set 64.5 m 42.7 m 42.1 m 1.4 m 150.8 m 
Total 328.4 m 171.4 m 282.9 m 17.9 m 800.8 m  
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density points and high-density points to adopt a consistent linear 
transformation method when extracting features, resulting in the point 
features to be segmented more similar in high-density points. The 
schematic process is shown in Fig. 2. 

In order to flexibly handle feature points with different density and 
weaken the contribution of high-density points, we learn the density of 
feature points through a series of processes to get their density weights, 
and then redistribute the contributions of different density points to 
unknown points through the density weights to correct high-density 
points as shown in Fig. 3. 

3.3. Density-based feature propagation 

In the feature propagation stage, we replace traditional linear 
interpolation model with density-based interpolation. The feature set of 
sampling points obtained from the feature extraction stage is F =
{
fi|i = 1,⋯, k

}
. The unknown feature set of the global point is F =

{
fj|j = 1,⋯, n

}
,n > k; For ∀j ∈ [1, n], there is fj =

∑n
iI1fI • ωi, where ωi is 

the contribution weight. Euclidean distance is used to quantify the 
weight formula (6): 

ωi =
disti

∑n
r=1distr

(6) 

Then the unknown feature of each global point can be obtained ac
cording to formula (7): 

fj =
∑n

i=1
ωi • fi (7) 

The traditional linear interpolation measures the weight by distance, 
which is effective when the fruit point cloud density distribution is 
constant. However, when the distance weights are the same, the high- 
density sampling points in class 1 and the low-density sampling points 
in class 2 are interpolated to the low-density unknown points (the true 
labels are still class 2) at the same time, the distance weights ωi(i = 1,2,
3, 4,5) are the same, then the high-density points contribute greatly due 
to their large number. the features in low density point after interpola
tion are more similar to the high density point, as shown in Fig. 4. 

We add the weight calculated from density in the interpolation stage, 
then the density-based interpolation can be expressed as formula (8). 

fj =
∑n

i=1
ωiÂ⋅Wi • fi (8) 

Through the density optimization, when different density sampling 
points interpolate to low-density unkown points, these weights are able 
to flexibly reflect the contribution of different density points, and finally 
the low-density unkown points get consistent labels, as shown in Fig. 5. 

3.4. Features spreading net with density 

In the design of Features Spreading Net with Density, since the cost of 
calculating the covariance matrix and variance matrix of the three- 
dimensional normal distribution is too high, we use three one- 
dimensional independent normal distributions as a simplification. In 
order to reduce the impact of its hypothetical three-dimensional inde
pendence on the specific implementation, we do not directly use it in the 
network training, but map it into an integer interval through a hash 
function, which is further used as the query index of Table Bank of 
Density, so that FSDnet can learn a special preference for certain 
weights. The specific modules are implemented as follows: 

LN þ Linear: We first define the input approach of features. First, 
the features are transformed through a linear layer,which make it into 
the new feature space.Then, for preventing the gradient explosion or 
vanishing,we have employed the LayerNorm,compared with Batch
Norm,which could decline the introduction of noise, facilitating faster 
convergence of the network. 

SAG (Sampling And Grouping): Distinguished from the modules in 
the backbone network, for defining the perceptual field size of sampling 
in order to determine the index of density easily, the measure of 
grouping is “ballquery” instead of “knnquery”. Therefore, we could 
define the vision size of sampling through the radius. 

Compute Density: To reduce the computational complexity further, 
we could consider 3-dimensional coordinates to be independently 

Fig. 8. Apple dataset sample point cloud.  

Table 2 
The IOU of strawberry dataset network training (%).  

ModelCategory Floor Base Plant Fruit mIOU 

Pointnet 61 77 66 0.0 51 
Pointnet2 71 79 89 38 69 
PointWeb 73 82 91 53 74.2 
PAConv 76 80 90 47 76.4 
KPConv 72 83 93 51 77.0 
PointConv 74 80 88 45 73.7 
Pointnet + FSDnet(Gaussian) 65 85 78 5 58 
Pointnet2 + FSDnet(Gaussian) 70 85 89 43 72 
PointWeb + FSDnet(Gaussian) 73 81 93 59 77.2 
PAConv + FSDnet(Gaussian) 77 82 91 44 80.9 
KPConv + FSDnet(Gaussian) 75 82 90 47 76.8  
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distributed under the condition of acceptable error. In order to reduce 
the negative impact of the assumption of the independence of the three 
one-dimensional normal distributions, we do not directly involve the 
three one-dimensional normal densities in the operation, but instead use 
a hash function to map them to an integer interval and then use them as 
a lookup index for a specific parameter table (see Fig. 6), which can be 
expressed as idxx = hash(g(xi) ), idxy = hash

(
g
(
yi
) )

, idxy = hash(g(zi) ).

(9) where g denotes the one-dimensional Gaussian density operator. The 
hash function implementation is described in inquiry. 

Weights: For each feature dimension, we designed a 3*L size matrix 
to store the weights corresponding to the density on each coordinate 
dimension. Thus, its capacity is C*3*L,in comparison with regular 

measure whose capacity is round C*S*S*4 (L ≅ 3S,S > 3). 
Inquiry: That’s include Query and Calculation. In Query phase, we 

compute index with the help of density in 3-dimensional coordinates, 

that could be expressed as “idxj,x =
⌈
g(xi)j*L

⌉
”where idxj,x is the density 

index in the x direction for the j-th features dimension. In Calculation 
phase, We have adopted a more modern approach that combines density 
weighting with features as: 

fj =
∑n

i=1
Wifi +Bi (10)  

where Wi = L1,x
[
idxi,x

]
+ L1,y

[
idxi,y

]
+ L1,z

[
idxi,z

]
,Bi = L2,x

[
idxi,x

]
+

L2,y
[
idxi,y

]
+ L2,z

[
idxi,z

]
. 

Fig. 9. Visual comparison on strawberry dataset.  
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In the specific implementation, we adopted two weights, W and B, as 
density weights, which allows the feature transformation to map to a 
larger feature space. Then, by embedding this calculation process before 
feature extraction and feature propagation, we can accomplish the tasks 
of Formula 5 and Formula 8. 

It should be noted that for the two traditional density calculation 
schemes in Section 3.1.1, we only need to take their 3D coordinate 
vectors as input and perform density calculations separately. In the 
subsequent experimental section, we embedded our proposed module 
into well-established network architectures, including PointNet, 
PointNet++, PointWeb, PAConv, and KPConv. This integration aims to 
demonstrate the efficacy and versatility of the module in enhancing the 
performance of these networks. 

4. Experiment 

4.1. Data set preparation 

4.1.1. Strawberry scene point cloud dataset 
In order to verify the validity of our theory and expand the appli

cation of point cloud deep learning in agriculture, we choose strawberry 
as our experimental plant. In the field we use deep camera to acquire 
images of strawberry plants from different angles, about 60 images are 
taken per strawberry plants on average, then we use MVS algorithms to 
reconstruct point clouds from these images. Due to the presence of 
discrete points, We preprocess the reconstructed point cloud to remove 
most of the discrete points. The reconstruction point clouds are dense, 
containing around 4 to 6million points per strawberry plants. The 
reconstruction scene is a dense point cloud with the field’s floor, 
strawberry’s base, strawberry plants and fruits. In order to improve the 
efficiency of model training, we downsample the point cloud. In the 
classification, the label of floor is set to 0, the label of base is set to 1,the 
label of plants is set to 2,the label of fruit is set to 3. At last these labeled 
point clouds are respectively encapsulated in the h5 files. Compared 
with other crops, strawberry has a short growth cycle, short plants, and 
dense branches and leaves. The fruit grows among the branches and 
leaves, which is severely blocked and difficult to photograph. Therefore, 
in the process of capturing an image containing strawberry fruit, it is 
inevitable to cause the angle deviation of the captured image and the 
deficiency of the plant, and then there will be many discrete points, 
holes, and uneven density when synthesizing the point cloud. Therefore, 
it is appropriate to choose strawberries as our experimental data to 
verify the ability of the network. 

In the strawberry experimental field in Yangling City, Shaanxi 
Province, the strawberry point cloud was photographed and labeled by 
the depth camera from multiple perspectives, and 30 sets of point cloud 
scenes in the training and validation set and 7 sets of point cloud scenes 
in the test set were obtained, shown in Fig. 7. The specific point cloud 
data are shown in Table 1. 

4.1.2. Apple dataset 
In order to test the generalization performance of proposed FSDnet, 

we choose the Apple dataset (Yu et al., 2022) for test. Apple dataset is 
also a dataset composed of images from multiple angles. This data set is 
only composed of three types of objects: branches, leaves, and fruits. 
When capturing images, due to the small number of pictures taken, the 
features of the synthesized data set are more sparse. Therefore, the 
segmented fruit phenotype is very different from that of strawberries, An 
example of this is shown in Fig. 8. 

It can be clearly seen from the Fig. 8 that the average density of the 
Apple data set is lower, but there are almost no discrete points and holes, 
and all points are almost within a regular range, which has a lot to do 
with the artificial splicing model. 

4.2. Experimental comparison of strawberry dataset 

The experiment of embedding FSDnet on different networks is first 
carried out on the strawberry dataset. The experimental results show 
that the contribution of similar features originally concentrated in the 
scene is weakened by the density network, and the sparse and discrete 
features are enhanced, thereby it improves the performance of the 
original network, especially the segmentation accuracy of fruits. The 
specific data is shown in Table 2. 

It can be seen from the table that the mIOU of Pointnet is increased 7 
% by improving the existing classic network structure with the FSDnet 
module, and for pointnet that lacks overall perception of the scene, after 
adding FSDnet, the iou (5 %) of the segmentation fruit is a Great 
improvement. For Pointnet++, mIOU has increased by 2 %, and all IOUs 
except the floor have been improved to a certain extent. Then, the model 
has the potential to enhance the accuracy of nearly all advanced models 
except KPConv. We figure out that the ineffectiveness of embedded 
FSDnet can be attributed to the excessive number of parameters in 
KPConv that do not align with the complexity of the dataset. The visu
alization and training curves are shown in Fig. 9. Blue represents floor, 
green represent base, yellow represents plans, red represents fruit. 

4.3. Generalization performance test 

In order to verify that FSDnet has universal performance in agri
cultural fruit segmentation, we conducted a generalization experiment 
on the Apple Dataset, and extracted 16 groups of the apple segmentation 
data set used in LFPnet for experiments. The results are shown in 
Table 3: 

As shown in Table 3, we adopted the FSDnet module in Pointnet and 
Pointnet2. mIOU increased by 5 % and 2 %. And the IOU of most clas
sifications increased. In the segmentation of the edge points in Fig. 10, 
after adding the FSDnet module, the segmentation of edge parts such as 
leaf and branch is more accurate, which shows the effectiveness of our 
improvement. Similar to the results on the strawberry dataset, the 
embedded FSDnet results of all advanced models, except KPConv, are 
superior. The visualization and training curves are shown in Fig. 10. 
Blue represents branch,green represents leaf,red represents fruit. 

4.4. Comparative experiment of different density data sets 

In order to verify that FSDnet has strong performance under different 
densities, we have performed different subsampling on the two data sets, 
and the sampling distance unit is defined as equation (11). 

dunit =

⃒
⃒di − dj

⃒
⃒
max

N
# (11) 

where dunit is the unit length, 
⃒
⃒di − dj

⃒
⃒
max is the maximum distance 

between any two points in the point cloud, and N is the total number of 
point clouds. 

On this basis, we use uniform sampling and use a fixed unit value as 

Table 3 
The IOU of apple dataset network training (%).  

Model\Category Branch Leaf Fruit MIOU 

Pointnet 21 10 76 36 
Pointnet2 89 73 95 91 
PointWeb 87 92 95 92 
PAConv 91 95 95 94 
KPConv 88 93 96 93 
PointConv 90 86 94 92 
Pointnet + FSDnet(Gaussian) 22 20 75 41 
Pointnet2 + FSDnet(Gaussian) 93 79 95 93 
PointWeb + FSDnet(Gaussian) 90 96 94 93 
PAConv + FSDnet(Gaussian) 93 97 96 95 
KPConv + FSDnet(Gaussian) 87 92 95 91  
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the sampling radius to subsample the strawberry and apple datasets. 

4.4.1. Apple dataset density comparison experiment 
We use the apple data set with a sampling radius of 0.001, 0.01 and 

0.03 unit lengths respectively, and conduct a split test. The accuracy is as 
Table 4: 

It can be seen from the above table that the segmentation accuracy of 
all models almost decreases with the decrease of the density, but before 
comparing the embedded FSDnet, the reduction of the segmentation 
accuracy is significantly reduced after the embedded FSDnet. After 

Fig. 10. Visual comparison on apple dataset.  

Table 4 
Accuracy of network segmentation under different densities of apple dataset 
(%).  

Model\Sampling radius 0.001 0.01 0.03 

Pointnet 63 41 19 
Pointnet2 86 81 78 
Pointnet + FSDnet(Gaussian) 71 59 27 
Pointnet2 + FSDnet(Gaussian) 88 84 79  
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Poinnet is embedded with FSDnet, the accuracy rate increases by 8 %, 
18 % and 8 % respectively under different density conditions; After 
Pointnet2 is embedded with FSDnet, the accuracy rate increases by 2 %, 
3 % and 1 %, respectively, which shows that the density is in a certain 
range. Inner helps to learn sparse features. Its segmentation visualiza
tion is as Fig. 11: 

4.4.2. Strwberry dataset density comparison experiment 
Like the apple dataset, we subsample the strawberry dataset with a 

unit radius of 0.001, 0.01 and 0.05, and perform a split test. Since the 
strawberry point cloud is relatively dense, the maximum sampling 
radius is larger than that of the apple dataset, and it still performs well. 
The split test is performed, and the accuracy rate is as Table 5: 

It can also be clearly seen that after the FSDnet is embedded, the 
segmentation accuracy rate decreases significantly with the decrease in 
density. The segmentation accuracy of Pointnet embedded with FSDnet 
increased by 8 %, 4 %, and 11 % respectively under different density 
conditions; while the accuracy of Pointnet2 embedded with FSDnet 

increased by 4 %, 7 %, and 2 %, respectively. This at least shows that 
FSDnet is very helpful for the network to learn the characteristics of 
sparse point clouds. The visualization results are as Fig. 12: 

4.5. Discussion 

4.5.1. Selection of different density schemes 
In this section, we discuss the impact of different density estimation 

schemes on mIOU, network parameters as Table 6. 
On the basis of Pointnet2, we embedded the FSDnet network and 

added 0.5 M network parameters, which is beneficial to the improve
ment of mIOU. After that, we adopted three different density estimation 
schemes, among which the KNN_max and KNN_mean density schemes 
increased the computational traffic by about 0.8G, and the accuracy 
improved by 4 % and 1 %, respectively. The Gaussian density increases 
by only 0.32G while the mIOU increases by 3 %, which proves the 
validity of our gaussian density estimation. 

4.5.2. The adaptability of FSDnet on filed fruit dataset 
We compared the above experiments and found that under the same 

data set, the lower the point cloud density, the sparser the features, and 
the worse the model’s ability to learn features, which has a great impact 
on the segmentation of point cloud data captured in agricultural sce
narios. However, after the models with medium parameter quantities 
embed with the FSDnet module, the accuracy of its segmentation has 
been greatly improved, which shows that FSDnet can assist the main 
model to learn the sparse features of the point cloud. In addition, 
comparing different data sets, we found that whether it is in the 

Fig. 11. Apple dataset different density results visualization atlas.  

Table 5 
Accuracy of network segmentation under different densities of strawberry 
dataset(%).  

Model\Sampling radius 0.001 0.01 0.05 

Pointnet 65 54 23 
Pointnet2 85 73 60 
Pointnet + FSDnet(Gaussian) 73 58 34 
Pointnet2 + FSDnet(Gaussian) 89 80 62  
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strawberry data set with relatively uneven point cloud, many discrete 
points, and holes, or in the apple data set with relatively uniform point 
cloud, the FSDnet module has improved the mIOU of the main network. 
This shows that FSDnet inputs the density as an auxiliary feature into the 
network, which is helpful for the network to capture the phenotype of 
the fruit point cloud. 

5. Conclusion 

In this paper, we propose a novel density-based network module 
FSDnet for raw point clouds. It provides a feasible solution for the 
problem of precision degradation caused by the porous and discrete 
points of image synthesis point cloud. Provide a summary of all the 
aforementioned experimental results, in agricultural scenarios, FSDnet 
can improve all models with medium parameter quantities; However, 
FSDnet has no obvious improvement effect on models with larger pa
rameters. In the comparative experiments of different density schemes, 
our Gaussian density scheme has better overall performance than other 
traditional density schemes, and FSDnet also greatly alleviate the 
reduction in segmentation accuracy caused by the sparseness of fruit 
features due to density reduction. These reduces FSDnet’s requirements 
on the performance of capture devices, and thus can be adapted for 
large-scale deployment in orchard. 

Although FSDnet has certain value in crop plant phenotype seg
mentation, automatic field picking and general fields, it is difficult to 
achieve real-time speed in crop point cloud acquisition and pre
processing based on depth camera, which hinders the further applica
tion of FSDnet. At the same time, FSDnet currently has large network 
parameters. In the future, we will continue to optimize FSDnet, reduce 

network parameters, and improve the point cloud acquisition scheme to 
make it truly applicable to light agricultural picking robot scenarios. 
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