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Abstract—The real-time and accurate 3D segmentation of
fruits in agricultural field is crucial for precision agriculture. In
complex field scenarios, point clouds generated by depth cameras
often have gaps and point dispersion problems, using the tradi-
tional farthest point sampling algorithm (FPS) makes it difficult
to uniformly capture key features, and FPS requires extensive
sorting operations, which reduces the speed of feature extraction.
To optimize the sampling uniformity of point clouds with mul-
tiple holes in agricultural field scenes while enhancing feature
extraction efficiency, this paper proposes a lightweight and
efficient density-based grid parallel feature extraction network
GPFEnet. First, an adaptive grid parallel grouping algorithm
was designed to address the issue of low efficiency in capturing
point cloud features caused by irregular point cloud data in
complex field scenarios. Based on this fundamental algorithm, a
density-based grid random sampling algorithm GDSample was
proposed, which optimize sampling uniformity while improving
sampling efficiency through support for parallel computation.
Finally, the grid parallel feature extraction subnetwork GPFEnet
was developed which can be embedded into point cloud deep
learning networks. Testing results on field datasets show that
the proposed GDSample algorithm is approximately 35 times
faster than FPS, significantly accelerating feature extraction
while ensuring more even coverage of key features. To confirm
the superiority of GPFEnet on multi-hole fruit datasets, the
GPFEnet was integrated into various cutting-edge point cloud
deep learning networks, achieved a significant enhancement in
speed of feature extraction while maintaining similar accuracy
in fruit segmentation. The code will be publicly available after
the paper is accepted.

Index Terms—Point Cloud, Deep Learning, Fruit Segmen-
tation, Lightweight Grid Parallel Feature Extraction, Parallel
Computing.

I. INTRODUCTION

With the advancement of agricultural automation, how to
further enhance the real-time performance of automatic fruit
picking while accurately identifying fruit phenotypes and their
environmental characteristics has become a core issue in
current automated fruit harvesting. Currently, images and point
clouds, as two primary data forms, are widely used in the
agricultural field. Compared to images, point clouds can more
comprehensively reflect crop phenotypes and environmental
characteristics, making them an emerging research direction.
However, in current agricultural point cloud research, the
inefficiency of point cloud generation and recognition remains
a major factor limiting the application of point clouds in
agricultural automation.

In recent years, the efficiency of real-time point cloud cap-
ture and generation has been partially addressed. He et al. [1]
and Yang et al. [2] achieved significant improvements across
multiple efficiency benchmarks. In complex field scenarios,

image reconstruction based on depth cameras has overcome
many shortcomings of traditional 3D scanners, becoming the
mainstream method for acquiring crop point clouds. Depth
cameras are inexpensive, highly portable, and capable of
effectively capturing plant features, ensuring the completeness
of plant trait reconstruction, and hold great potential for large-
scale applications in agriculture. However, due to environmen-
tal influences, the fruit point clouds obtained by this method
often contain many discrete points with complex backgrounds
(such as leaves, branches, and lighting), as well as missing
points and holes. Therefore, how to accurately identify point
clouds in the presence of multiple discrete points, holes, and
missing data remains an urgent problem to be solved.

With the development and application of deep learning in
point clouds, the accuracy of point cloud recognition has
gradually improved. On public datasets, model recognition
accuracy has made significant progress. Taking the Stanford
University Indoor 3D Dataset (S3DIS) as an example, after
the emergence of Point Transformer [3], the model’s mean
Intersection over Union surpassed 70%. In field scenarios, Li
et al. [4] developed DeepSeg3DMaize based on PointNet++,
achieving a segmentation accuracy of up to 91% for corn stems
and leaves. Liu et al. [5] proposed a density-based feature
extraction and feature propagation method, achieving a seg-
mentation accuracy of up to 95% on apples. Therefore, under
the current research background, deep learning models for
point clouds are capable of handling recognition tasks in most
scenarios. However, the cost behind this high-precision recog-
nition is a sharp increase in computational load. For instance,
a simple PointNet++ [6] end-to-end run requires about 2.0
GFlops, but on Stratified-Transformer [7], the computational
load reaches nearly 30.0 GFlops. The lengthy computation
time results in low point cloud recognition efficiency on low-
power field devices, leading to poor immediacy and human-
machine interaction in agricultural automatic picking.

The low efficiency of point cloud recognition is primarily
attributed to two factors: the excessive number of neurons
and the frequent invocation of the point cloud feature extrac-
tion process, which is difficult to reduce while maintaining
recognition accuracy. Therefore, optimizing the operational
efficiency of feature extraction has become an effective ap-
proach to enhance the efficiency of point cloud recognition.
Most existing classical models [3], [6], [7], [8], [9] employ
the FPS algorithm to iteratively select the point farthest from
the currently selected set as the key feature. Although FPS
is relatively easy to implement, it yields lower uniformity of
key features for datasets with discrete points and multiple



holes, such as fruit datasets. When reducing the number of
sampling points, FPS tends to concentrate the sampling points
on the edges of the point cloud, which significantly lowers the
recognition accuracy in cases of multiple discrete points and
holes. Additionally, FPS determines the farthest point through
extensive sorting, resulting in a complexity of O(N2), which
inevitably reduces the efficiency of feature extraction.

In order to address the issues of low sampling uniformity
and inefficient feature extraction in complex agricultural scene
datasets using traditional sample methods, thereby improving
the real-time performance of point cloud deep learning in
agricultural harvesting, A Grid and Density-based Parallel
Feature Extraction Network (GPFEnet) was proposed. The
main contributions are as follows:

• A grid-based parallel grouping algorithm with point cloud
shape adaptability was proposed, which eliminate the
need for distance calculations between points, thereby
enhancing the efficiency of the grouping algorithm.

• A density-based grid random sampling algorithm,
GDSample, was proposed, which addresses the issues
of low sampling efficiency and difficulty in uniformly
covering key features in complex field scenarios with
multiple holes and discrete points.

• A grid parallel feature extraction framework, GPFEnet,
was designed and embedded into classic point cloud
neural networks. This framework improves the feature ex-
traction efficiency of traditional networks for point clouds
of porous fruits while maintaining crop segmentation
accuracy.

II. RELATED WORK

Optimizing the uniformity of point cloud sampling and the
efficiency of feature extraction is of significant importance for
the real-time recognition of fruits in complex field environ-
ments, and directly impacts the accuracy of segmentation. This
paper will describe research progress in two aspects: deep
learning in fruit point cloud segmentation and point cloud
feature extraction techniques.

A. Deep Learning in Fruit Point Cloud Segmentation

In recent years, the rapid advancement of 3D point clouds
in computer vision, coupled with improved spatial learning
capabilities in point cloud semantic segmentation for industrial
applications, has prompted researchers to explore its use in
agricultural settings for fruit recognition and segmentation.

Li et al. [4] developed the DeepSeg3DMaize system based
on PointNet, offering a framework for automated analysis of
3D phenotypic features at the individual plant level. Chen
et al. [10] enhanced RandLA-Net’s local feature aggregation
module, enabling semantic segmentation of large-scale agri-
cultural scenes using 3D point clouds. Jayakumari et al. [11]
improved PointNet’s random sampling scheme, facilitating the
segmentation of cabbage and tomato. Hu et al. [12] applied
an HSV color enhancement algorithm to PointNet++ for seg-
mentation of rapeseed point clouds. Yu et al. [13] introduced a
3DSTN spatial transformation network to align point clouds on

PointNet and designed a pyramid pooling module for feature
extraction, achieving successful segmentation of apples, pears,
and lemons. Liu et al. [5] developed FSDnet, a network
that leverages Gaussian density feature extraction and feature
propagation, improving the semantic segmentation accuracy of
strawberry and apple point clouds.

As point cloud-based fruit segmentation accuracy improves
in field tasks, deep learning models have become increas-
ingly complex, reducing operational efficiency. Moreover, the
irregular shapes of point clouds from depth cameras, their
high complexity, and the presence of numerous discrete points
and gaps have hindered the widespread adoption of point
cloud deep learning in agriculture. Thus, efficiently extracting
key features from porous datasets in field conditions while
preserving fruit segmentation accuracy is a critical challenge
that needs urgent attention.

B. Current Status of Feature Extraction in Point Cloud Deep
Learning

With the advancement of deep learning technologies for
point clouds, significant progress has been made in optimizing
point cloud feature extraction. Gradually, four mainstream
feature extraction methods have emerged, based on projection,
voxelization, deep learning, and raw point clouds.

Projection-based Feature Extraction. To accomplish ob-
ject detection tasks, many studies project 3D point clouds
onto 2D images. Chen et al. [14] combined features from
different viewpoints to achieve accurate 3D object detection
in autonomous driving. Similarly, Lang et al. [15] proposed a
new encoder that converts point clouds into a format suitable
for detection pipelines. However, this projection process often
results in the loss of important geometric details from the point
clouds.

Voxel-based Feature Extraction. Yilun et al. [16] vox-
elized point clouds into 3D grids and generated a small
number of high-quality initial predictions through lightweight
convolutional operations. Graham et al. [17] voxelized point
clouds and applied 3D CNNs to process spatially sparse data
more efficiently. Additionally, Le [18] designed PointGrid,
which better represents local geometric details through voxel
grids. However, voxelization is computationally intensive and
more complex compared to point-based extraction methods.

Deep Learning-based Feature Extraction. Dovrat et al.
[19] introduced the generator-based S-Net (GS) for feature
extraction, while Lang et al. [20] enhanced it with a soft pro-
jection operation, resulting in the SampleNet network, which
excelled in classification and reconstruction tasks. Abid [21]
proposed the Continuous Relaxation-based Sampling (CRS)
method, utilizing reparameterization for continuous domain
sampling, but its large weight matrix incurs high memory
costs. Similarly, Yang et al. [22] introduced Gumbel Subset
Sampling (PGS), improving speed and efficiency over tradi-
tional GS methods. Nezhadarya et al. [23] used max-pooling
for key point extraction, while Qian et al. [24] developed
MOPS-Net to learn a sampling transformation matrix for
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Fig. 1: The total structure of GPFEnet. (a) Overall Framework Diagram. max:max pooling. neighbor: nearest neighbor. (b)
Grid Random Sample Algorithm Based on Density (GDSample). dpb: division of point cloud boundary. (c) Other Layer.

generating new point clouds. Lin et al. [25] proposed a density-
adaptive method to address point cloud density variation.
While these methods reduce feature loss compared to tradi-
tional algorithms, they involve high computational complexity
and pre-training, making them suited only for high-precision
applications.

Point-based Feature Extraction. Wei [26] introduced Pois-
son disk sampling (PDS) for tightly packed samples, but its use
on surfaces is computationally costly due to frequent geodesic
distance calculations. For uneven point cloud densities, Tokdar
et al. [27] proposed the Inverse Density Importance Sampling
(IDIS) algorithm, though it suffers from significant errors in
density estimation in dense point clouds, limiting its applica-
bility. To enhance efficiency, Hu et al. [12] developed RandLA-
Net, a large-scale point cloud recognition network based on
random sampling. Qi et al. [6] introduced PointNet++, utiliz-
ing FPS for feature extraction. Although effective for local
feature aggregation and simple to implement, its dependence
on multiple sorting operations hinders parallel efficiency and
slows processing speeds.

With the significant enhancement of algorithm efficiency
through parallel computing across various fields, scholars have
introduced it into point cloud deep learning to improve model
recognition efficiency. To further optimize the FPS algorithm,
Zhao et al. [8] implemented CUDA parallelization of the FPS
algorithm in PointWeb, significantly boosting sampling effi-
ciency by processing point cloud blocks with multithreading.
This method has been widely applied in multiple networks
[3], [7], [8], [9] for feature extraction. However, this process
requires sorting all unsampled points to determine the point

farthest from the sampled points, which incurs substantial
sorting overhead, occupying the majority of the sampling
algorithm’s time and preventing FPS from achieving full
parallelization in feature extraction. Therefore, minimizing
sorting and further parallelizing the point cloud sampling
algorithm has become a critical research issue in optimizing
feature extraction efficiency.

III. METHODS

Traditional sampling method FPS extract key points based
on the farthest distance rather than density, resulting in a higher
distribution of feature points in low-density edge regions and
fewer features in the central areas. This ultimately leads to an
uneven coverage of key features across the entire point cloud.
Additionally, FPS iteratively selects the point farthest from the
currently selected set, a process that often involves extensive
sorting, reducing the efficiency of feature extraction.

To address the issue of uniform key feature distribution
while improving the efficiency of feature extraction, a Grid
Parallel feature extraction Network (GPFEnet) was proposed,
as illustrated in Figure 1. First, an adaptive grid is constructed
based on the shape of the point cloud data to facilitate
grid grouping, thereby avoiding distance calculations between
points and enhancing grouping efficiency. Building on this,
a Density-based Parallel Grid Random Sampling algorithm
(GDSample) was designed. This algorithm not only extracts
more features in high-density regions but also ensures that the
edges of the point cloud are captured. By employing random
sampling and parallel computation, it balances efficiency and
accuracy, thereby improving the sampling efficiency for point
clouds with multiple holes. Finally, we construct the GPFEnet



tailored for feature extraction in datasets with multiple holes
and integrate it into classical point cloud deep learning models.
This approach significantly enhances feature extraction effi-
ciency while maintaining recognition accuracy for point cloud
data with multiple holes.

A. Grid Parallel Group Algorithm

Traditional grouping schemes often rely on relative distance
calculations and sorting operations, but the spatial distance be-
tween any two points is unknown. Consequently, in the worst-
case scenario, many variables require O(N2) time to process,
which directly impacts the efficiency of feature extraction from
fruit point clouds.

Grid-based partitioning is an effective method to eliminate
distance calculations and reduce time complexity. Ade et al.
[28] utilized a value of E

√
2 to construct a grid for 2D spatial

data, reducing computation time to a linear level. Similarly,
Deng et al. [29] introduced E-neighborhood units based on
grids, eliminating the need for distance calculations between
points and significantly improving performance. Therefore, to
enhance feature extraction efficiency, this paper constructs an
adaptive grid based on the shape of point cloud data and
performs parallel grid grouping, eliminating distance calcu-
lations between points and avoiding the time overhead caused
by sorting, thereby achieving higher performance in grouping.
This process is divided into two steps:

• Design of Self-Adaption Grid. Determine the boundary
range of the point cloud and construct the minimum
bounding box enclosing the point cloud data in 3D space.
Subsequently, adaptively design the grid size, dividing the
bounding box into multiple uniform, shape-adaptive cubic
grids.

• Grid Parallel Group. Map the fruit point cloud to
corresponding grid units based on the designed three-
dimensional voxel grid.
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Fig. 2: Division of point cloud boundary.

1) Design of Self-Adaption Grid: In this section, we rapidly
construct an adaptive grid based on the shape and sampling
points of the fruit point cloud data. This is specifically
achieved through the following three steps:

First, allocate threads based on the number of input point
clouds. As shown in Figure 2, let the set of fruit points be:
P = {pij | i = 1, 2, 3, . . . , n; j = 1, 2, 3}. Apply for t threads
as shown in Equation (1):

t = min (1 ≪ log2 n, 1024) (1)

where ≪ symbol serves as a shift operator, ensuring that
the number of threads is close to the size of the point cloud
being processed while making the thread count a power of
two, thereby enhancing the program’s concurrency.

Then, obtain the minimum bounding box of the fruit point
cloud. Define the overall point cloud boundary as shown in
Equation (2):

B = {bmax,j , bmin,j |j = 1, 2, 3} (2)

Obtain the boundary values of the point cloud through
Equation (3):

bf,j =


t+1∧
k=1

f (pij)

∣∣∣∣∣∣∣∣∣
i = k, k + t, . . . , k + λt;

k + λt ≤ n;

k = 1, . . . , t;

j = 1, 2, 3;

 (3)

where k represents the thread number, f denotes the maxi-
mum or minimum operation, and Λ means the thread reduction
operation. In Equation (3), the thread numbered k processes
the fruit point cloud with indices{k, k+t, . . . , k+λt}, contin-
uing until k + λt ≤ n. Subsequently, a reduction operation is
performed to obtain the boundary of the point cloud across
all threads, as illustrated in Figure 2. By parallelizing the
aforementioned method, the cloud boundary of the fruit point
is rapidly acquired, thereby preparing the groundwork for
efficient grouping.
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Fig. 3: Division of point cloud grid.

Finally, obtain the minimum parameters of the boundary
box and the grid, including the size of the boundary, the size
of grid cell and the total number of grid cells in the boundary
box. As shown in Figure 3, based on the grid boundary B, the
side length of the boundary box that encompasses the entire
point cloud is obtained as in Equation (4):

hj = θ (bmax,j − bmin,j) (4)

where θ is an increasing sorting function. Design the grid
side length through Equation (5):



gridsize =
h1

3

√
m

3∏
j=1

hj
h0

(5)

where m represents the number of points to be sampled.
The total number of grid cells obtained through Equation (6):

gridnum =

2∏
i=0

α

(
hj

gridsize

)
(6)

where α is the ceiling function. The division of the grid
based on the boundary B of the fruit point cloud and the
number of sampling points m, as described above, significantly
ensures the robustness and flexibility of the algorithm for
different fruit point cloud data.

2) Grid Parallel Group: To reduce reliance on sorting, a
grid-based parallel grouping algorithm is proposed, tailored
to the characteristics of fruit point cloud data and based on
the constructed 3D voxel grid. This algorithm maps the point
cloud to corresponding grid cells. By doing so, grouping can
be performed without depending on the distance sorting of un-
sampled points, significantly mitigating the impact of sorting
on grouping speed and effectively enhancing the operational
efficiency of fruit point cloud feature extraction.
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Fig. 4: Grid parallel group.

The specific strategy, as shown in Figure 4, involves obtain-
ing the coordinates of the grid where the fruit point cloud pi
is located through the hash function in Equation (7) within the
online program thread numbered k,

gij = β

(
pij − bmin,j

gridsize

)
(7)

where β represents the floor function. By mapping points
to their corresponding grids using grid coordinates, the time
overhead caused by sorting is avoided, thereby achieving
efficient grouping of fruit point clouds into grids.

B. Grid Random Sample Algorithm Based on Density

For the irregularly shaped fruit point cloud data obtained by
depth cameras, which contain a large number of discrete points
and holes, the point cloud density at the edges of the holes
is relatively low. Along the radial line from the hole to the
center of the dataset, the point cloud density increases sharply.
The FPS method selects key features based on the farthest
point, resulting in a concentration of feature points at the low-
density edges, while the high-density regions have relatively
fewer feature points. This leads to poor global coverage of
the extracted key features. Additionally, the FPS method often
requires extensive sorting techniques to determine the farthest
distances, resulting in low efficiency.

To address the aforementioned issues, a density-based grid
random sampling algorithm (GDSample) was proposed based
on the fruit point cloud data after grid parallel grouping in
Section 3.A. Firstly, we select key features based on density
rather than distance, optimizing the uniformity of sampling
for point clouds of porous fruits. Subsequently, we eliminate
distance calculations and sorting through grid partitioning,
while using grid random sampling to balance efficiency and
accuracy. Finally, we parallelize the algorithm to make the
sampling process more efficient. The specific operation of the
algorithm is as follows:

First, we define the index vi of point pi in the grid as the
number of point clouds currently held by the grid when pi is
stored. Subsequently, for a thread with the sequence number
k, the sampling rate is set as shown in Equation (8):

rk = max (vi)×
m

n
(8)

where n represents the total number of input point clouds,
and m is the number of sampled points. The sampling rate
is calculated based on the maximum density, ensuring that a
greater number of key features are selected from dense point
clouds.

Then, perform the operation as shown in Equation (9) on
the index vi of the fruit point pi in the grid.

v
′

i = vi % rk (9)

Finally, obtain the fruit sampling point set as shown in
Equation (10):

S =

{
sej = Φ

(
v

′

i

)∣∣∣∣∣e = k, k + t, . . . , k + µt;

k + µt ≤ m;

}
(10)

The Φ function represents the sequential selection of points
v′i = {0, 1, . . . , rk − 1} until a sufficient number of sampling
points is obtained. Starting from 0, the Φ function ensures that
each grid cell is sampled at least once, effectively extracting
sparse edge points while capturing more features from dense
point clouds, thereby achieving uniform coverage of key
features. This process indirectly enhances sampling efficiency
through a randomized sampling approach.
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Fig. 5: Design of GPFEnet and embedding into classic models.

C. Design of GPFEnet

To maintain the accuracy of fruit point cloud semantic
segmentation while improving the speed of feature extraction,
we designed the GPFEnet as shown in Figure 5. The specific
feature extraction process is as follows:

Sampling Based on GDSample. For input point cloud data
with the shape [N, 3+c], the 3D coordinate portion [N, 3]
is first extracted as input. Key feature coordinates are then
extracted using GDSample, resulting in a feature output with
the shape [M].

Feature Point Generation. The input point cloud [N, 3] and
the extracted key feature coordinates [M] are grouped together,
generating feature points with the shape [M, 3], which supports
subsequent operations.

Local Feature Capture Based on KNNQuery. To more
efficiently aggregate neighboring features, KNNQuery is used
instead of BallQuery as the grouping metric, enhancing the
ability to capture local features.

Feature Transformation Based on MLP. First, a linear
layer (Linear) is used to transform the features into a new
feature space. Then, to avoid gradient explosion or vanish-
ing, LayerNorm is employed instead of BatchNorm, reducing
noise introduction and promoting faster network convergence.
Finally, ReLU is chosen as the activation function to mitigate
the risk of overfitting while enhancing the network’s robust-
ness. Using MLP layers for complex feature extraction and
nonlinear transformations allows the input features to enter a
new feature space, better learning the semantic information of
the features.

Feature Aggregation. The MaxPool function is used in-
stead of AveragePool for feature aggregation. The former
effectively reduces computation, captures edge features, and
improves overall network efficiency.

Through the above design, GPFEnet can be more efficiently
integrated into various point cloud processing networks,
further enhancing network performance while maintaining
computational efficiency and applicability. To strengthen
GPFEnet’s adaptability across different networks, we embed-
ded the proposed GPFEnet module, as shown in Figure 5,
into established network architectures, including PointNet++,
PointWeb, PAConv, and Point Transformer, to validate its
effectiveness and versatility in boosting the performance of

these networks.

IV. EXPERIMENTS

A. Agricultural Scene Datasets

1) Strawberry Dataset: To validate the uniform and effi-
cient sampling of the GDSample algorithm on point clouds of
porous fruits and the effectiveness of the GPFENet in main-
taining the accuracy of fruit semantic segmentation, thereby
expanding the application of point cloud deep learning in
agriculture, we first chose to conduct experiments using a
strawberry dataset [5] synthesized with a depth camera in
complex field scenarios. Compared to other crops, strawberries
have a short growth cycle, low plant stature, and dense
foliage. The fruits grow among the leaves and are severely
occluded, making them difficult to photograph. Therefore, in
the process of capturing images containing strawberry fruits, it
is inevitable to cause angular deviations between the captured
images and the plants, resulting in many discrete points, holes,
and uneven density in the synthesized point clouds.

Fig. 6: Strawberry dataset sample point cloud.

This dataset consists of four types of objects, including
the ground of the field, the base of the strawberry, the
strawberry plant, and the fruit, as detailed in Figure 6. Each
set of reconstructed point clouds is very dense, comprising 30
point cloud scenes in the training-validation set and 7 point
cloud scenes in the test set. Each strawberry plant contains
approximately 4 to 6 million points, with specific point cloud
data as shown in Table I. Comprehensive analysis indicates
that selecting strawberry point cloud data with multiple holes
and discrete points is appropriate for validating our network.

TABLE I: The number of strawberry point cloud (m: millions).

Dataset Category Floor 0 Base 1 Plant 2 Fruit 3 Total
Training set 263.9m 128.6m 240.8m 16.5m 649.9m
Test set 64.5m 42.7m 42.1m 1.4m 150.8m
Total 328.4m 171.4m 282.9m 17.9m 800.8m

2) Cabbage Dataset: To evaluate the generalization perfor-
mance of the proposed GPFEnet on fruit point cloud datasets,
we selected the Chinese flowering cabbage dataset for testing.
In field scenarios, Chinese flowering cabbage exhibits low
color contrast, large leaves and branches, minimal occlusion,
and ease of photography, resulting in fewer discrete points
and holes during point cloud synthesis. Its fruit phenotype
significantly differs from that of strawberries, as illustrated in
Figure 7.



Fig. 7: Cabbage dataset sample point cloud.

This dataset comprises three types of objects: flower pots,
leaves, and stems. Compared to the strawberry dataset, the
reconstructed point cloud density of this dataset is relatively
sparse, with each Chinese flowering cabbage plant containing
approximately 300,000 points. The specific point cloud data
is detailed in Table II.

TABLE II: The number of cabbage point cloud (m: millions).

Dataset Category Flowerpot 0 Leaf 1 Branch 2 Total
Training set 20.29m 13.39m 0.68m 34.43m
Test set 8.83m 4.65m 0.17m 13.65m
Total 29.13m 18.04m 0.86m 48.09m

B. Speed Performance Validation

In this section, we systematically evaluate the efficiency of
existing sampling methods, including FPS, IDIS, GS, CRS,
PGS, as well as CUDA-based cudaFPS and GDSample, using
the strawberry point cloud dataset. Given strawberry point
clouds of varying scales {103, 5× 103, 104, 5× 104, 105}, we
apply the aforementioned sampling methods to downsample
the fruit point clouds, with a sampling rate set at n/m =
4. The experimental setup includes an Intel i7-12700H @
2.3GHz CPU and an NVIDIA RTX 3050Ti GPU. The total
time taken by each sampling method to process point clouds
of different sizes is presented in Table III.

TABLE III: Point cloud sampling speed comparison (ms). The
number of point clouds ranges from 103 to 105.

Model Category 103 5× 103 104 5× 104 105

FPS 1.17 7.34 20.13 200.29 1489.48
IDIS 4.25 19.85 39.79 101.23 399.48
GS 20.38 97.57 496.34 104 6× 104

CRS 2.48 4.26 6.34 11.27 42.14
PGS 4.25 3.57 3.27 5.37 8.79
cudaFPS 22.52 22.86 22.88 39.26 121.99
GDSample (Ours) 0.49 0.60 0.63 1.31 3.88

In the sample speed visualization of Figure 8, the following
conclusions can be drawn:

For small-scale point clouds (∼ 103), except for GS and
cudaFPS, other sampling methods have similar time consump-
tion and are unlikely to impose a heavy computational burden.

As the scale of the point cloud increases, the rate curves of
FPS/IDIS/GS rise particularly sharply. Although the increase
in CRS/PGS/cudaFPS is more gradual, their time consumption
is still significantly higher than that of GPFEnet. By comparing

Fig. 8: Time consumption of different sampling approaches.

the time consumption of CUDA-based cudaFPS and GDSam-
ple, we find that the latter has a CUDA acceleration ratio of
approximately 35 times compared to the former.

From the above analysis, it can be concluded that the
proposed algorithm has significantly lower time consumption
than traditional, more expensive sampling methods, and the
sampling speed is significantly improved, demonstrating the
efficiency of the GDSample algorithm in sampling on the
porous strawberry dataset, thereby significantly improving
feature extraction efficiency.

C. GDSample Sampling Uniformity Validation

To further validate the effectiveness of GDSample in opti-
mizing sampling uniformity, we selected a strawberry dataset
with multiple cavities and discrete points for visualization
of sampling results. Specifically, different sampling meth-
ods, FPS and GDSample, were employed to extract key
features at varying sampling rates of n/m = 4096/m =
{2, 4, 8, . . . , 1024}, The sampled point sets were then visu-
alized as shown in Figure 9, where the blue point clouds rep-
resent the key features extracted by the sampling algorithms.
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Fig. 9: Visualization of feature points, using FPS and GDSam-
ple on the strawberry dataset at different sampling rates.

By analyzing Figure 9, the following observations can be
made:

When the sampling rate is 4, the distribution of feature
points extracted by GDSample and FPS shows minimal dif-
ferences.

When the sampling rate is 16, FPS primarily extracts key
features concentrated at the edge points, whereas GDSample
not only extracts more features in high-density regions but also
effectively captures edge points of the point cloud.



TABLE IV: The segmentation accuracy on strawberry dataset.

Model Category mIoU(%) mAcc(%) allAcc(%) Floor(%) Base(%) Plant(%) Fruit(%)
Pointnet2 51.95 66.17 75.95 66.61 41.58 64.09 35.51
PointWeb 74.28 80.85 92.49 89.26 73.07 90.64 44.17
PAConv 75.42 84.83 91.62 87.52 67.38 91.96 54.83
Point Transformer 68.16 79.39 83.95 69.66 54.20 90.03 58.73
Pointnet2 + GPFEnet 54.41 69.61 79.55 69.24 33.50 74.48 40.43
PointWeb + GPFEnet 75.65 83.28 93.60 87.18 69.46 90.76 55.22
PAConv + GPFEnet 78.09 86.61 92.65 89.39 71.82 91.49 59.65
Point Transformer + GPFEnet 70.33 79.66 86.22 78.64 59.17 89.53 53.96

TABLE V: The segmentation accuracy on cabbage dataset.

Model Category mIoU(%) mAcc(%) allAcc(%) Flowerpot(%) Leaf(%) Branch(%)
Pointnet2 53.40 67.92 98.17 97.70 91.91 24.00
PointWeb 54.63 68.72 98.08 99.54 90.48 23.80
PAConv 64.58 69.24 98.67 98.50 95.91 63.93
Point Transformer 67.77 70.02 98.77 98.47 96.69 75.93
Pointnet2 + GPFEnet 57.34 68.74 98.04 97.92 92.91 38.52
PointWeb + GPFEnet 53.75 69.76 97.94 98.73 91.13 25.14
PAConv + GPFEnet 63.19 69.03 98.50 98.38 95.78 58.62
Point Transformer + GPFEnet 67.34 69.49 99.14 99.08 97.83 72.44

As the sampling rate further increases to 64 and 128, the
advantages of the proposed algorithm become particularly
pronounced. FPS mainly extracts feature points at the edges of
the point cloud, leading to insufficient coverage of features in
the central region. In contrast, GDSample not only fully retains
the features of the edge regions but also achieves uniform
coverage in the central part of the point cloud, optimizing the
uniformity of sampling.

These findings validate the superiority and robustness of
GDSample in sampling porous point clouds in complex field
scenarios, demonstrating its adaptability and global feature
coverage capabilities at different sampling rates.

D. GPFEnet Fruit Dataset Segmentation Experiment
In this section, we systematically evaluate the accuracy of

GPFEnet for point cloud semantic segmentation in complex
field scenarios. Specifically, using strawberry and Chinese
cabbage field datasets as input point clouds, the proposed
GPFEnet module is embedded into classic network architec-
tures mentioned before.

The specific experimental parameters are set as follows:
normalized color is concatenated with xyz coordinates as input
data, the sampling rate is set to n/m = 4, the SGD optimizer
with momentum is used, with momentum and weight decay
set to 0.9 and 0.0001 respectively, the initial learning rate is
set to 0.55, training is conducted for 200 epochs, and the
experimental setup includes an Intel Xeon Platinum 8255C
@ 2.5GHz CPU and an NVIDIA RTX 3080Ti GPU.

1) Strawberry Segmentation: To validate the segmentation
accuracy of GPFEnet on point clouds of porous fruits, we
initially conducted experiments embedding GPFEnet into dif-
ferent networks on a strawberry dataset. The evaluation metrics
for the experiments included mIoU, mean Accuracy (mAcc),
overall point Accuracy (OA), and the mean Intersection over
Union(Iou) for the four categories of strawberries (including
floor, base, leaves, and fruit). The segmentation results of the
strawberry dataset are visualized in Figure 10.

Accuracy Analysis. As shown in Table IV. the mIoU of
PointNet++ increased by 2.46 % after embedding the GPFEnet
module. For PointWeb, PAConv, and Point Transformer, the
mIoU increased by 1.37%, 2.67%, and 2.17%, respectively.
For the floor, base, leaves, and fruits of strawberries, most IoUs
have improved to some extent, indicating that the GPFEnet is
more accurate in segmenting porous strawberry data compared
to the original model.
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Fig. 10: Visual comparison on strawberry dataset.

From the above analysis, it can be concluded that the model
embedded with GPFEnet alleviates the impact of porous data
synthesized by depth cameras on segmentation accuracy and
more uniformly extracts key features in complex scenes.

2) Cabbage Segmentation: To further validate the effective-
ness of GPFEnet in fruit segmentation, we selected cabbage
dataset with fewer holes and discrete points for generaliza-
tion experiments. The evaluation metrics for the experiments
included the mIou, mAcc, OA, and the Iou for the three
categories of Chinese flowering cabbage (including flowerpot,
stem, and leaf). The segmentation visualization of Chinese
flowering cabbage is shown in Figure 11.

Accuracy Analysis. The experimental accuracy of the Chi-



nese flowering cabbage is shown in Table V. All three cat-
egories of Chinese flowering cabbage showed improvements
on Pointnet++, with mIoU increasing by 3.94% and mAcc by
0.82%. In the PAConv experiments, all categories except for
the flowerpot showed improvements. On Point Transformer,
allAcc increased by 0.37%, with all accuracies except for
the leaf showing improvements. However, the segmentation
mIoU on PAConv decreased by 1.39%. Through analysis, we
believe that although the random sampling in the GDSample
algorithm led to a slight decrease in segmentation accuracy, it
significantly improved the processing speed.
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Fig. 11: Visual comparison on cabbage dataset.

From the above analysis, it can be concluded that some
models embedded with the GPFEnet have achieved a cer-
tain degree of improvement on the cabbage dataset with
fewer holes. By comparing the segmentation effects with the
strawberry dataset, it is evident that the proposed network
is more suitable for datasets with more holes, demonstrating
the network’s superiority in segmenting porous datasets in
complex field scenarios.

V. CONCLUSION

To optimize the sampling uniformity of point clouds with
multiple holes in agricultural field scenes while enhancing
feature extraction efficiency, this paper presents the GDSam-
ple algorithm, a lightweight and efficient density-based grid
parallel sampling method, alongside GPFEnet, a grid parallel
feature extraction network. Experiments on the strawberry
dataset demonstrate that GDSample is approximately 35 times
faster than FPS, significantly improving sampling efficiency
for porous point clouds. The algorithm also effectively cap-
tures global features, ensuring uniformity in sampling. Seg-
mentation tests on both the strawberry and Chinese flowering
cabbage datasets show that GPFEnet, while maintaining speed,

achieves competitive segmentation accuracy, with improve-
ments of 2.67% mIoU on strawberries and 3.94% on bok
choy. These results highlight the method’s ability to balance
efficiency and accuracy, offering a viable solution to the
challenges of feature extraction and coverage in complex
agricultural environments with porous, discrete point clouds.

While random sampling increases efficiency, it may slightly
reduce accuracy on some models compared to FPS. Future
work will focus on optimizing the model, increasing accuracy
to better accommodate lightweight agricultural robots and
similar applications.
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